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Francis’s Algorithm

David S. Watkins

Abstract. John Francis’s implicitly shifted QR algorithm turned the problem of matrix eigen-
value computation from difficult to routine almost overnight about fifty years ago. It was
named one of the top ten algorithms of the twentieth century by Dongarra and Sullivan, and it
deserves to be more widely known and understood by the general mathematical community.
This article provides an efficient introduction to Francis’s algorithm that follows a novel path.
Efficiency is gained by omitting the traditional but wholly unnecessary detour through the
basic QR algorithm. A brief history of the algorithm is also included. It was not a one-man
show; some other important names are Rutishauser, Wilkinson, and Kublanovskaya. Francis
was never a specialist in matrix computations. He was employed in the early computer indus-
try, spent some time on the problem of eigenvalue computation and did amazing work, and
then moved on to other things. He never looked back, and he remained unaware of the huge
impact of his work until many years later.

1. INTRODUCTION. A problem that arises frequently in scientific computing ap-
plications is that of computing the eigenvalues and eigenvectors of a real or complex
square matrix. Nowadays we take it for granted that we can do this. For example, I was
able to compute a complete set of eigenvalues and eigenvectors of a real 1000× 1000
matrix on my laptop in about 15 seconds using MATLAB R©. Not only MATLAB has
this capability; it is built into a large number of packages, both proprietary and open
source. Not long ago [7] the complete eigensystem of a dense matrix of order 105 was
computed on a parallel supercomputer.1 These feats are made possible by good soft-
ware and good hardware. Today’s computers are fast and have large memories, and
they are reliable.

Fifty years ago the situation was very different. Computers were slow, had small
memories, and were unreliable. The software situation was equally bad. Nobody knew
how to compute the eigenvalues of, say, a 10× 10 matrix in an efficient, reliable way.
It was in this environment that young John Francis found himself writing programs
for the Pegasus computer at the National Defense Research Corporation in London.
A major problem at that time was the flutter of aircraft wings, and for the analysis
there was a need to compute eigenvalues. Francis was given the task of writing some
matrix computation routines, including some eigenvalue programs. His interest in the
problem grew far beyond what he had been assigned to do. He had obtained a copy
of Heinz Rutishauser’s paper on the LR algorithm [13], he had attended seminar talks
by James Wilkinson2 in which he learned about the advantages of computing with or-
thogonal matrices, and he saw the possibility of creating a superior method. He worked
on this project on the side, with the tolerance (and perhaps support) of his supervisor,
Christopher Strachey. In 1959 he created and tested the procedure that is now com-
monly known as the implicitly-shifted QR algorithm, which I prefer to call Francis’s

doi:10.4169/amer.math.monthly.118.05.387
1Most large matrices that arise in applications are sparse, not dense. That is, the vast majority of their

entries are zeros. For sparse matrices there are special methods [1] that can compute selected eigenvalues of
extremely large matrices (much larger than 105). These methods are important, but they are not the focus of
this paper.

2A few years later, Wilkinson wrote the highly influential book The Algebraic Eigenvalue Problem [20].
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algorithm. It became and has continued to be the big workhorse of eigensystem com-
putations. A version of Francis’s algorithm was used by MATLAB when I asked it to
compute the eigensystem of a 1000× 1000 matrix on my laptop. Another version was
used for the computation on the matrix of order 105 reported in [7].

Once Francis finished his work on the QR project, he moved on to other things
and never looked back. In the infant computer industry there were many urgent tasks,
for example, compiler development. Within a few years the importance of Francis’s
algorithm was recognized, but by then Francis had left the world of numerical analysis.
Only many years later did he find out what a huge impact his algorithm had had.

2. PRECURSORS OF FRANCIS’S ALGORITHM. Most of us learned in an in-
troductory linear algebra course that the way to compute eigenvalues is to form the
characteristic polynomial and factor it to get the zeros. Because of the equivalence of
the eigenvalue problem with that of finding the roots of a polynomial equation, it is
difficult to put a date on the beginning of the history of eigenvalue computations. The
polynomial problem is quite old, and we all know something about its history. In par-
ticular, early in the 19th century Abel proved that there is no general formula (using
only addition, subtraction, multiplication, division, and the extraction of roots) for the
roots of a polynomial of degree five. This result, which is one of the crowning achieve-
ments of Galois theory, has the practical consequence for numerical analysts that all
methods for computing eigenvalues are iterative. Direct methods, such as Gaussian
elimination for solving a linear system Ax = b, do not exist for the eigenvalue prob-
lem.

The early history of eigenvalue computation is intertwined with that of computing
roots of polynomial equations. Eventually it was realized that forming the charac-
teristic polynomial might not be a good idea, as the zeros of a polynomial are of-
ten extremely sensitive to small perturbations in the coefficients [19, 21]. All modern
methods for computing eigenvalues work directly with the matrix, avoiding the charac-
teristic polynomial altogether. Moreover, the eigenvalue problem has become a much
more important part of computational mathematics than the polynomial root finding
problem is.

For our story, an important early contribution was the 1892 dissertation of Jacques
Hadamard [9], in which he proposed a method for computing the poles of a meromor-
phic function

f (z) =
∞∑

k=0

sk

zk+1
, (1)

given the sequence of coefficients (sk). Some sixty years later Eduard Stiefel, founder
of the Institute for Applied Mathematics at ETH Zürich, set a related problem for his
young assistant, Heinz Rutishauser: given a matrix A, determine its eigenvalues from
the sequence of moments

sk = yT Ak x, k = 0, 1, 2, . . . ,

where x and y are (more or less) arbitrary vectors. If the moments are used to define a
function f as in (1), every pole of f is an eigenvalue of A. Moreover, for almost any
choice of vectors x and y, the complete set of poles of f is exactly the complete set
of eigenvalues of A. Thus the problem posed by Stiefel is essentially equivalent to the
problem addressed by Hadamard. Rutishauser came up with a new method, which he
called the quotient-difference (qd) algorithm [11, 12], that solves this problem. Today
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we know that this is a bad way to compute eigenvalues, as the poles of f (like the
zeros of a polynomial) can be extremely sensitive to small changes in the coefficients.
However, Rutishauser saw that there were multiple ways to organize and interpret
his qd algorithm. He reformulated it as a process of factorization and recombination
of tridiagonal matrices, and from there he was able to generalize it to obtain the LR
algorithm [13]. For more information about this seminal work see [8], in addition to
the works of Rutishauser cited above.

Francis knew about Rutishauser’s work, and so did Vera Kublanovskaya, working
in Leningrad. Francis [3] and Kublanovskaya [10] independently proposed the QR
algorithm, which promises greater stability by replacing LR decompositions with QR
decompositions. The basic QR algorithm is as follows: Factor your matrix A into a
product A = QR, where Q is unitary and R is upper triangular. Then reverse the factors
and multiply them back together to get a new matrix: RQ = Â. Briefly we have

A = QR, RQ = Â.

This is one iteration of the basic QR algorithm. It is easy to check that Â = Q−1 AQ,
so Â is unitarily similar to A and therefore has the same eigenvalues. If the process is
now iterated:

A j−1 = Q j R j , R j Q j = A j ,

the sequence of unitarily similar matrices so produced will (usually) tend toward
(block) triangular form, eventually revealing the eigenvalues on the main diagonal.
If A is real, the entire process can be done in real arithmetic.

The basic QR algorithm converges rather slowly. A remedy is to incorporate shifts
of origin:

A j−1 − ρ j I = Q j R j , R j Q j + ρ j I = A j . (2)

Again it is easy to show that the matrices so produced are unitarily similar. Good
choices of shifts ρ j can improve the convergence rate dramatically. A good shift is one
that approximates an eigenvalue well.

Many applications feature real matrices that have, however, lots of complex eigen-
values. If one wants rapid convergence of complex eigenvalues, one needs to use com-
plex shifts and carry out (2) in complex arithmetic. This posed a problem for Francis:
Working in complex arithmetic on the Pegasus computer would have been really diffi-
cult. Moreover, complex matrices require twice as much storage space as real matrices
do, and Pegasus didn’t have much storage space. He therefore looked for a method that
avoids complex arithmetic.

If iterate A0 is real and we do an iteration of (2) with a complex shift ρ, the resulting
matrix A1 is, of course, complex. However, if we then do another iteration using the
complex conjugate shift ρ, the resulting matrix A2 is again real. Francis knew this,
and he looked for a method that would get him directly from A0 to A2. He found
such a method, the double-shift QR algorithm [4], which does two iterations of the
QR algorithm implicitly, entirely in real arithmetic. This algorithm does not cause
convergence to triangular form; it is impossible for complex eigenvalues to emerge
on the main diagonal of a real matrix. Instead pairs of complex conjugate eigenvalues
emerge in 2× 2 packets along the main diagonal of a block triangular matrix.

Francis coded his new algorithm in assembly language on the Pegasus computer
and tried it out. Using this new method, the flying horse was able to compute all of the
eigenvalues of a 24× 24 matrix in just over ten minutes [4].
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We will describe Francis’s double-shift QR algorithm below, and the reader will
see that it is completely different from the shifted QR algorithm (2). Francis had to
expend some effort to demonstrate that his new method does indeed effect two steps
of (2).

When we teach students about Francis’s algorithm today, we still follow this path.
We introduce the shifted QR algorithm (2) and talk about why it works, then we in-
troduce Francis’s algorithm, and then we demonstrate equivalence using the so-called
implicit-Q theorem. A primary objective of this paper is to demonstrate that this ap-
proach is inefficient. It is simpler to introduce Francis’s algorithm straightaway and
explain why it works, bypassing (2) altogether.3

3. REFLECTORS AND THE REDUCTION TO HESSENBERG FORM. Before
we can describe Francis’s algorithm, we need to introduce some basic tools of numer-
ical linear algebra. For simplicity we will restrict our attention to the real case, but
everything we do here can easily be extended to the complex setting.

Let x and y be two distinct vectors in Rn with the same Euclidean norm: ‖x‖2 =

‖y‖2, and let S denote the hyperplane (through the origin) orthogonal to x − y. Then
the linear transformation Q that reflects vectors through S clearly maps x to y and vice
versa. Since Q preserves norms, it is unitary: Q∗ = Q−1. It is also clearly involutory:
Q−1
= Q, so it is also Hermitian: Q∗ = Q. Viewing Q as a matrix, it is real, orthog-

onal (QT
= Q−1), and symmetric (QT

= Q). A precise expression for the matrix Q
is

Q = I − 2uuT , where u = (x − y)/‖x − y‖2.

Now consider an arbitrary nonzero x and a special y:

x =


x1

x2
...

xn

 , y =


y1

0
...

0

 , where y1 = ±‖x‖2.

Since x and y have the same norm, we know that there is a reflector Q such that
Qx = y. Such an operator is clearly a boon to numerical linear algebraists, as it gives
us a means of introducing large numbers of zeros. Letting e1 denote the vector with
a 1 in the first position and zeros elsewhere, as usual, we can restate our result as
follows.

Theorem 1. Let x ∈ Rn be any nonzero vector. Then there is a reflector Q such that
Qx = αe1, where α = ±‖x‖2.

In the world of matrix computations, reflectors are also known as Householder
transformations. For details on the practical construction and use of reflectors see [17]
or [6], for example.

With reflectors in hand we can easily transform any matrix nearly all the way to
triangular form. A matrix A is called upper Hessenberg if it satisfies ai j = 0 whenever
i > j + 1. For example, a 5× 5 upper Hessenberg matrix has the form

3It is only fair to admit that this is not my first attempt. The earlier work [16], which I now view as
premature, failed to expose fully the role of Krylov subspaces (explained below) for the functioning of Francis’s
algorithm. It is my fervent hope that I will not view the current work as premature a few years from now.
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∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗

 ,
where blank spots denote zeros and asterisks denote numbers that can have any real
value.

Theorem 2. Every A ∈ Rn×n is orthogonally similar to an upper Hessenberg matrix:
H = Q−1 AQ, where Q is a product of n − 2 reflectors.

Proof. The first reflector Q1 has the form

Q1 =

[
1

Q̃1

]
, (3)

where Q̃1 is an (n − 1)× (n − 1) reflector such that

Q̃1


a21

a31
...

an1

 =

∗

0
...

0

 .
If we multiply A on the left by Q1, we obtain a matrix Q1 A that has zeros in the
first column from the third entry on. To complete a similarity transformation, we must
multiply on the right by Q1 (= Q−1

1 ). Because Q1 has the form (3), the transformation
Q1 A 7→ Q1 AQ1 does not alter the first column. Thus Q1 AQ1 has the desired zeros in
the first column.

The second reflector Q2 has the form

Q2 =

 1
1

Q̃2


and is constructed so that Q2 Q1 AQ1 Q2 has zeros in the second column from the
fourth position on. This transformation does not disturb the zeros that were created
in the first column in the first step. The details are left for the reader (or see [17], for
example). The third reflector Q3 creates zeros in the third column, and so on. After
n − 2 reflectors, we will have produced a matrix H = Qn−2 · · · Q1 AQ1 · · · Qn−2 in
upper Hessenberg form. Letting Q = Q1 · · · Qn−2, we have Q−1

= Qn−2 · · · Q1, and
H = Q−1 AQ.

The proof of Theorem 2 is constructive; that is, it gives a finite algorithm (a direct
method) for computing H and Q. The operations used are those required for setting
up and applying reflectors, namely addition, subtraction, multiplication, division, and
the extraction of square roots [6, 17]. What we really want is an algorithm to get us
all the way to upper triangular form, from which we can read off the eigenvalues. But
Hessenberg form is as far as we can get with a finite algorithm using the specified
operations. If we had a general procedure for creating even one more zero below the
main diagonal, we would be able to split the eigenvalue problem into two smaller
eigenvalue problems. If we could do this, we would be able to split each of the smaller
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problems into still smaller problems and eventually get to triangular form by a finite
algorithm. This would imply the existence of a formula for the zeros of a general nth
degree polynomial, in violation of Galois theory.

The ability to reduce a matrix to upper Hessenberg form is quite useful. If the QR al-
gorithm (2) is initiated with a matrix A0 that is upper Hessenberg, then (except in some
special cases that can be avoided) all iterates A j are upper Hessenberg. This results in
much more economical iterations, as both the QR decomposition and the subsequent
RQ multiplication can be done in many fewer operations in the Hessenberg case. Thus
an initial reduction to upper Hessenberg form is well worth the extra expense. In fact,
the algorithm would not be competitive without it.

For Francis’s implicitly-shifted QR algorithm, the Hessenberg form is absolutely
essential.

4. FRANCIS’S ALGORITHM. Suppose we want to find the eigenvalues of some
matrix A ∈ Rn×n . We continue to focus on the real case; the extension to complex
matrices is straightforward. We know from Theorem 2 that we can reduce A to upper
Hessenberg form, so let us assume from the outset that A is upper Hessenberg. We
can assume, moreover, that A is properly upper Hessenberg. This means that all of the
subdiagonal entries of A are nonzero: a j+1, j 6= 0 for j = 1, 2, . . . , n − 1. Indeed, if A
is not properly upper Hessenberg, say ak+1,k = 0, then A has the block-triangular form

A =

[
A11 A12

0 A22

]
,

where A11 is k × k. Thus the eigenvalue problem for A reduces to eigenvalue prob-
lems for the smaller upper Hessenberg matrices A11 and A22. If either of these is not
properly upper Hessenberg, we can break it apart further until we are finally left with
proper upper Hessenberg matrices. We will assume, therefore, that A is properly upper
Hessenberg from the outset.

An iteration of Francis’s algorithm of degree m begins by picking m shifts ρ1, . . . ,

ρm . In principal m can be any positive integer, but in practice it should be fairly small.
Francis took m = 2. The rationale for shift selection will be explained later. There are
many reasonable ways to choose shifts, but the simplest is to take ρ1, . . . , ρm to be the
eigenvalues of the m × m submatrix in the lower right-hand corner of A. This is an
easy computation if m = 2.

If m > 1, this shifting strategy can produce complex shifts, but they always occur
in conjugate pairs. Whether we use this or some other strategy, we will always insist
that it have this property: when the matrix is real, complex shifts must be produced in
conjugate pairs.

Now let

p(A) = (A − ρm I ) · · · (A − ρ1 I ).

We do not actually compute p(A), as this would be too expensive. Francis’s algorithm
just needs the first column

x = p(A)e1,

which is easily computed by m successive matrix-vector multiplications. The com-
putation is especially cheap because A is upper Hessenberg. It is easy to check that
(A − ρ1 I )e1 has nonzero entries in only its first two positions, (A − ρ2 I )(A − ρ1 I )e1

has nonzero entries in only its first three positions, and so on. As a consequence, x has
nonzero entries in only its first m + 1 positions. The entire computation of x depends
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on only the first m columns of A (and the shifts) and requires negligible computational
effort if m is small. Since the complex shifts occur in conjugate pairs, p(A) is real.
Therefore x is real.

Let x̃ ∈ Rm+1 denote the vector consisting of the first m + 1 entries of x (the
nonzero part). Theorem 1 guarantees that there is an (m + 1)× (m + 1) reflector Q̃0

such that Q̃0 x̃ = αe1, where α = ±‖x̃‖2. Let Q0 be an n × n reflector given by

Q0 =

[
Q̃0

I

]
. (4)

Clearly Q0x = αe1 and, since Q0 is an involution, Q0e1 = α
−1x . Thus the first column

of Q0 is proportional to x .
Now use Q0 to perform a similarity transformation: A 7→ Q−1

0 AQ0 = Q0 AQ0.
This disturbs the Hessenberg form but only slightly. Because Q0 has the form (4), the
transformation A 7→ Q0 A affects only the first m + 1 rows. Typically the first m + 1
rows are completely filled in. The transformation Q0 A 7→ Q0 AQ0 affects only the first
m + 1 columns. Since am+2,m+1 6= 0, row m + 2 gets filled in by this transformation.
Below row m + 2, we have a big block of zeros, and these remain zero. The total effect
is that there is a bulge in the Hessenberg form. In the case m = 3 and n = 7, the matrix
Q0 AQ0 looks like 

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗


.

In this 7 × 7 matrix the bulge looks huge. If you envision, say, the 100 × 100 case
(keeping m = 3), you will see that the matrix is almost upper Hessenberg with a tiny
bulge at the top.

The rest of the Francis iteration consists of returning this matrix to upper Hessen-
berg form by the algorithm sketched in the proof of Theorem 2. This begins with a
transformation Q1 that acts only on rows 2 through n and creates the desired zeros
in the first column. Since the first column already consists of zeros after row m + 2,
the scope of Q1 can be restricted a lot further in this case. It needs to act on rows 2
through m + 2 and create zeros in positions (3, 1), . . . , (m + 2, 1). Applying Q1 on
the left, we get a matrix Q1 Q0 AQ0 that has the Hessenberg form restored in the first
column. Completing the similarity transformation, we multiply by Q1 on the right.
This recombines columns 2 through m + 2. Since am+3,m+2 6= 0, additional nonzero
entries are created in positions (m + 3, 2), . . . , (m + 3,m + 1). In the case m = 3 and
n = 7 the matrix Q1 Q0 AQ0 Q1 looks like

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗


.
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The bulge has not gotten any smaller, but it has been pushed one position to the right
and downward. This establishes the pattern for the process. The next transformation
will push the bulge over and down one more position, and so on. Thinking again of
the 100× 100 case, we see that a long sequence of such transformations will chase the
bulge down through the matrix until it is finally pushed off the bottom. At this point,
Hessenberg form will have been restored and the Francis iteration will be complete.
For obvious reasons, Francis’s algorithm is sometimes referred to as a bulge chasing
algorithm.

An iteration of Francis’s algorithm of degree m can be summarized briefly as fol-
lows.

1. Pick some shifts ρ1, . . . , ρm .
2. Compute x = p(A)e1 = (A − ρm I ) · · · (A − ρ1 I )e1.
3. Compute a reflector Q0 whose first column is proportional to x .
4. Do a similarity transformation A 7→ Q0 AQ0, creating a bulge.
5. Return the matrix to upper Hessenberg form by chasing the bulge.

Notice that, although this algorithm is commonly known as the implicitly-shifted
QR algorithm, its execution does not require any QR decompositions. Why, then,
should we call it the QR algorithm? The name is misleading, and for this reason I
prefer to call it Francis’s algorithm.

Letting Â denote the final result of the Francis iteration, we have

Â = Qn−2 · · · Q1 Q0 AQ0 Q1 · · · Qn−2,

where Q0 is the transformation that creates the bulge, and Q1, . . . , Qn−2 are the trans-
formations that chase it. Letting

Q = Q0 Q1 · · · Qn−2,

we have

Â = Q−1 AQ.

Recall that Q0 was built in such a way that Q0e1 = βx = βp(A)e1. Looking back to
the proof of Theorem 2, we recall that each of the other Qi has e1 as its first column.
Thus Qi e1 = e1, i = 1, . . . , n − 2. We conclude that

Qe1 = Q0 Q1 · · · Qn−2e1 = Q0e1 = βx .

We summarize these findings in a theorem.

Theorem 3. A Francis iteration of degree m with shifts ρ1, . . . , ρm effects an orthog-
onal similarity transformation

Â = Q−1 AQ,

where

Qe1 = βp(A)e1 = β(A − ρm I ) · · · (A − ρ1 I )e1

for some nonzero β. In words, the first column of Q is proportional to the first column
of p(A).
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In the next section we will see why this procedure is so powerful. Repeated Francis
iterations with well-chosen shifts typically result in rapid convergence, in the sense that
an−m+1,n−m → 0 quadratically.4 In a few iterations, an−m+1,n−m will be small enough
to be considered zero. We can then deflate the problem:

A =

[
A11 A12

0 A22

]
.

The (small) m × m matrix A22 can be resolved into m eigenvalues with negligible
work. (Think of the case m = 2, for example.) We can then focus on the remaining
(n − m)× (n − m) submatrix A11 and go after another set of m eigenvalues.

5. WHY FRANCIS’S ALGORITHM WORKS.

Subspace Iteration. At the core of Francis’s algorithm lies the humble power method.
In the k-dimensional version, which is known as subspace iteration, we pick a k-
dimensional subspace S of Rn (or perhaps Cn) and, through repeated multiplication
by A, build the sequence of subspaces

S, AS, A2S, A3S, . . . . (5)

Here by AS we mean {Ax | x ∈ S}. To avoid complications in the discussion, we
will make some simplifying assumptions. We will suppose that all of the spaces in
the sequence have the same dimension k.5 We also assume that A is a diagonalizable
matrix with n linearly independent eigenvectors v1, . . . , vn and associated eigenvalues
λ1, . . . , λn .6 Sort the eigenvalues and eigenvectors so that |λ1| ≥ |λ2| ≥ · · · ≥ |λn|.
Any vector x can be expressed as a linear combination

x = c1v1 + c2v2 + · · · + cnvn

for some (unknown) c1, . . . , cn . Thus clearly

A j x = c1λ
j
1v1 + · · · + ckλ

j
kvk + ck+1λ

j
k+1vk+1 + · · · + cnλ

j
nvn, j = 1, 2, 3, . . . .

If |λk | > |λk+1|, the components in the directions v1, . . . , vk will grow relative to the
components in the directions vk+1, . . . , vn as j increases. As a consequence, unless our
choice of S was very unlucky, the sequence (5) will converge to the k-dimensional in-
variant subspace spanned by v1, . . . , vk . The convergence is linear with ratio |λk+1/λk |,
which means that the error is reduced by a factor of approximately |λk+1/λk | on each
iteration [18, 15].

Often the ratio |λk+1/λk | will be close to 1, so convergence will be slow. In an effort
to speed up convergence, we could consider replacing A by some p(A) in (5), giving
the iteration

S, p(A)S, p(A)2S, p(A)3S, . . . . (6)

4This is a simplification. It often happens that some shifts are much better than others, resulting in
an−k+1,n−k → 0 for some k < m.

5Of course it can happen that the dimension decreases in the course of the iterations. This does not cause
any problems for us. In fact, it is good news [15], but we will not discuss that case here.

6The non-diagonalizable case is more complicated but leads to similar conclusions. See [18] or [15], for
example.
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If p(z) = (z − ρm) · · · (z − ρ1) is a polynomial of degree m, each step of (6) amounts
to m steps of (5) with shifts ρ1, . . . , ρm . The eigenvalues of p(A) are p(λ1), . . . , p(λn).
If we renumber them so that |p(λ1)| ≥ · · · ≥ |p(λn)|, the rate of convergence of (6)
will be |p(λk+1)/p(λk)|. Now we have a bit more flexibility. Perhaps by a wise choice
choice of shifts ρ1, . . . , ρm , we can make this ratio small, at least for some values of k.

Subspace Iteration with Changes of Coordinate System. As we all know, a sim-
ilarity transformation Â = Q−1 AQ is just a change of coordinate system. A and Â
are two matrices that represent the same linear operator with respect to two different
bases. Each vector in Rn is the coordinate vector of some vector v in the vector space
on which the operator acts. If the vector v has coordinate vector x before the change
of coordinate system, it will have coordinate vector Q−1x afterwards.

Now consider a step of subspace iteration applied to the special subspace

E k = span{e1, . . . , ek},

where ei is the standard basis vector with a one in the i th position and zeros elsewhere.
The vectors p(A)e1, . . . , p(A)ek are a basis for the space p(A)E k . Let q1, . . . , qk

be an orthonormal basis for p(A)E k , which could be obtained by some variant of
the Gram-Schmidt process, for example. Let qk+1, . . . , qn be additional orthonormal
vectors such that q1, . . . , qn together form an orthonormal basis of Rn , and let Q =[

q1 · · · qn

]
∈ Rn×n . Since q1, . . . , qn are orthonormal, Q is an orthogonal matrix.

Now use Q to make a change of coordinate system

Â = Q−1 AQ = QT AQ.

Let us see what this change of basis does to the space p(A)E k . To this end we check the
basis vectors q1, . . . , qk . Under the change of coordinate system, these get mapped to
QT q1, . . . , QT qk . Because the columns of Q are the orthonormal vectors q1, . . . , qn ,
the vectors QT q1, . . . , QT qk are exactly e1, . . . , ek . Thus the change of coordinate
system maps p(A)E k back to E k .

Now, if we want to do another step of subspace iteration, we can work in the new
coordinate system, applying p( Â) to E k . Then we can do another change of coordi-
nate system and map p( Â)E k back to E k . If we continue to iterate in this manner, we
produce a sequence of orthogonally similar matrices (A j ) through successive changes
of coordinate system, and we are always dealing with the same subspace E k . This
is a version of subspace iteration for which the subspace stays fixed and the matrix
changes.

What does convergence mean in this case? As j increases, E k comes closer and
closer to being invariant under A j . The special space E k is invariant under A j if and
only if A j has the block-triangular form

A j =

[
A( j)

11 A( j)
12

0 A( j)
22

]
,

where A( j)
11 is k × k. Of course, we just approach invariance; we never attain it exactly.

In practice we will have

A j =

[
A( j)

11 A( j)
12

A( j)
21 A( j)

22

]
,
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where A( j)
21 → 0 linearly with ratio |p(λk+1)/p(λk)|. Eventually A( j)

21 will get small
enough that we can set it to zero and split the eigenvalue problem into two smaller
problems.

If one thinks about implementing subspace iteration with changes of coordinate sys-
tem in a straightforward manner, as outlined above, it appears to be a fairly expensive
procedure. Fortunately there is a way to implement this method on upper Hessenberg
matrices at reasonable computational cost, namely Francis’s algorithm. This amaz-
ing procedure effects subspace iteration with changes of coordinate system, not just
for one k, but for k = 1, . . . , n − 1 all at once. At this point we are not yet ready to
demonstrate this fact, but we can get a glimpse at what is going on.

Francis’s algorithm begins by computing the vector p(A)e1. This is a step of the
power method, or subspace iteration with k = 1, mapping E1 = span{e1} to p(A)E1.
Then, according to Theorem 3, this is followed by a change of coordinate system
Â = Q−1 AQ in which span{q1} = p(A)E1. This is exactly the case k = 1 of subspace
iteration with a change of coordinate system. Thus if we perform iterations repeatedly
with the same shifts (the effect of changing shifts will be discussed later), the sequence
of iterates (A j ) so produced will converge linearly to the form

λ1 ∗ · · · ∗

0
...

0

∗ · · · ∗

...
...

∗ · · · ∗

 .

Since the iterates are upper Hessenberg, this just means that a( j)
21 → 0. The conver-

gence is linear with ratio |p(λ2)/p(λ1)|.
This is just the tip of the iceberg. To get the complete picture, we must bring one

more concept into play.

Krylov Subspaces. Given a nonzero vector x , the sequence of Krylov subspaces as-
sociated with x is defined by

K1(A, x) = span{x},

K2(A, x) = span{x, Ax},

K3(A, x) = span
{

x, Ax, A2x
}
,

and in general Kk(A, x) = span
{

x, Ax, . . . , Ak−1x
}
, k = 1, 2, . . . , n. We need to

make a couple of observations about Krylov subspaces. The first is that wherever there
are Hessenberg matrices, there are Krylov subspaces lurking in the background.

Theorem 4. Let A be properly upper Hessenberg. Then

span{e1, . . . , ek} = Kk(A, e1), k = 1, . . . , n.

The proof is an easy exercise.

Theorem 5. Suppose H = Q−1 AQ, where H is properly upper Hessenberg. Let
q1, . . . , qn denote the columns of Q. Then

span{q1, . . . , qk} = Kk(A, q1), k = 1, . . . , n.
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In our application, Q is orthogonal, but this theorem is valid for any nonsingular Q. In
the special case Q = I , it reduces to Theorem 4.

Proof. We use induction on k. For k = 1, the result holds trivially. Now, for the induc-
tion step, rewrite the similarity transformation as AQ = Q H . Equating kth columns
of this equation we have, for k = 1, . . . , n − 1,

Aqk =

k+1∑
i=1

qi hik .

The sum stops at k + 1 because H is upper Hessenberg. We can rewrite this as

qk+1hk+1,k = Aqk −

k∑
i=1

qi hik . (7)

Our induction hypothesis is that span{q1, . . . , qk} = Kk(A, q1). Since qk ∈ Kk(A, q1),
it is clear that Aqk ∈ Kk+1(A, q1). Then, since hk+1,k 6= 0, equation (7) implies that
qk+1 ∈ Kk+1(A, q1). Thus span{q1, . . . , qk+1} ⊆ Kk+1(A, q1). Since q1, . . . , qk+1 are
linearly independent, and the dimension of Kk+1(A, q1) is at most k + 1, these sub-
spaces must be equal.

We remark in passing that equation (7) has computational as well as theoretical
importance. It is the central equation of the Arnoldi process, one of the most important
algorithms for large, sparse matrix computations [1].

Our second observation about Krylov subspaces is in connection with subspace it-
eration. Given a matrix A, which we take for granted as our given object of study,
we can say that each nonzero vector x contains the information to build a whole se-
quence of Krylov subspaces K1(A, x), K2(A, x), K3(A, x), . . . . Now consider a step
of subspace iteration applied to a Krylov subspace. One easily checks that

p(A)Kk(A, x) = Kk(A, p(A)x),

as a consequence of the equation Ap(A) = p(A)A. Thus the result of a step of sub-
space iteration on a Krylov subspace generated by x is another Krylov subspace,
namely the one generated by p(A)x . It follows that

the power method x 7→ p(A)x contains all the information about a whole se-
quence of nested subspace iterations,

in the following sense. The vector x generates a whole sequence of Krylov sub-
spaces Kk(A, x), k = 1, . . . , n, and p(A)x generates the sequence Kk(A, p(A)x),
k = 1, . . . , n. Moreover, the kth space Kk(A, p(A)x) is the result of one step of sub-
space iteration on the kth space Kk(A, x).

Back to Francis’s Algorithm. Each iteration of Francis’s algorithm executes a step
of the power method e1 7→ p(A)e1 followed by a change of coordinate system. As
we have just seen, the step of the power method induces subspace iterations on the
corresponding Krylov subspaces: Kk(A, e1) 7→ Kk(A, p(A)e1), k = 1, . . . , n. This is
not just some theoretical action. Since Francis’s algorithm operates on properly upper
Hessenberg matrices, the Krylov subspaces in question reside in the columns of the
transforming matrices.
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Indeed, a Francis iteration makes a change of coordinate system Â = Q−1 AQ. It
can happen that Â has one or more zeros on the subdiagonal. This is a rare and lucky
event, which allows us to reduce the problem immediately to two smaller eigenvalue
problems. Let us assume we have not been so lucky. Then Â is properly upper Hes-
senberg, and we can apply Theorem 5, along with Theorems 3 and 4, to deduce that,
for k = 1, . . . , n,

span{q1, . . . , qk} = Kk(A, q1)

= Kk(A, p(A)e1)

= p(A)Kk(A, e1)

= p(A)span{e1, . . . , ek}.

These equations show that Francis’s algorithm effects subspace iteration with a change
of coordinate system for dimensions k = 1, . . . , n − 1.

Now suppose we pick some shifts ρ1, . . . , ρm , let p(z) = (z − ρm) · · · (z − ρ1), and
do a sequence of Francis iterations with this fixed p to produce the sequence (A j ).
Then, for each k for which |p(λk+1)/p(λk)| < 1, we have a( j)

k+1,k → 0 linearly with
rate |p(λk+1)/p(λk)|. Thus all of the ratios

|p(λk+1)/p(λk)|, k = 1, . . . , n − 1,

are important. If any one of them is small, then one of the subdiagonal entries will
converge rapidly to zero, allowing us to break the problem into smaller eigenvalue
problems.

Choice of Shifts. The convergence results we have so far are based on the assumption
that we are going to pick some shifts ρ1, . . . , ρm in advance and use them over and
over again. Of course, this is not what really happens. In practice, we get access to
better and better shifts as we proceed, so we might as well use them. How, then, does
one choose good shifts?

To answer this question we start with a thought experiment. Suppose that we are
somehow able to find m shifts that are excellent in the sense that each of them approx-
imates one eigenvalue well (good to several decimal places, say) and is not nearly so
close to any of the other eigenvalues. Assume the m shifts approximate m different
eigenvalues. We have

p(z) = (z − ρm) · · · (z − ρ1),

where each zero of p approximates an eigenvalue well. Then, for each eigenvalue λk

that is well approximated by a shift, |p(λk)|will be tiny. There are m such eigenvalues.
For each eigenvalue that is not well approximated by a shift, |p(λk)| will not be small.
Thus, exactly m of the numbers |p(λk)| are small. If we renumber the eigenvalues so
that |p(λ1)| ≥ |p(λ2)| ≥ · · · ≥ |p(λn)|, we will have |p(λn−m)| � |p(λn−m+1)|, and

|p(λn−m+1)/p(λn−m)| � 1.

This will cause a( j)
n−m+1,n−m to converge to zero rapidly. Once this entry gets very small,
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the bottom m × m submatrix a( j)
n−m+1,n−m+1 · · · a( j)

n−m+1,n
...

...

a( j)
n,n−m+1 · · · a( j)

n,n

 (8)

will be nearly separated from the rest of the matrix. Its eigenvalues will be excel-
lent approximations to eigenvalues of A, eventually even substantially better than the
shifts that were used to find them.7 It makes sense, then, to take the eigenvalues of
(8) as new shifts, replacing the old ones. This will result in a reduction of the ra-
tio |p(λn−m+1)/p(λn−m)| and even faster convergence. At some future point it would
make sense to replace these shifts by even better ones to get even better convergence.

This thought experiment shows that at some point it makes sense to use the eigen-
values of (8) as shifts, but several questions remain. How should the shifts be chosen
initially? At what point should we switch to the strategy of using eigenvalues of (8) as
shifts? How often should we update the shifts?

The answers to these questions were not at all evident to Francis and the other
eigenvalue computation pioneers. A great deal of testing and experimentation has led
to the following empirical conclusions. The shifts should be updated on every iteration,
and it is okay to use the eigenvalues of (8) as shifts right from the very start. At first
they will be poor approximations, and progress will be slow. After a few (or sometimes
more) iterations, they will begin to home in on eigenvalues and the convergence rate
will improve. With new shifts chosen on each iteration, the method normally converges
quadratically [18, 15], which means that |a( j+1)

n−m+1,n−m | will be roughly the square of

|a( j)
n−m+1,n−m |. Thus successive values of |a( j)

n−m+1,n−m | could be approximately 10−3,
10−6, 10−12, 10−24, for example. Very quickly this number gets small enough that we
can declare it to be zero and split off an m ×m submatrix and m eigenvalues. Then we
can deflate the problem and go after the next set of m eigenvalues.

There is one caveat. The strategy of using the eigenvalues of (8) as shifts does not
always work, so variants have been introduced. And it is safe to say that all shifting
strategies now in use are indeed variants of this simple strategy. The stategies used by
the codes in MATLAB and other modern software are quite good, but they might not
be unbreakable. Certainly nobody has been able to prove that they are. It is an open
question to come up with a shifting strategy that provably always works and normally
yields rapid convergence.

It is a common phenomenon that numerical methods work better than we can prove
they work. In Francis’s algorithm the introduction of dynamic shifting (new shifts on
each iteration) dramatically improves the convergence rate but at the same time makes
the analysis much more difficult.

Next-to-Last Words. Francis’s algorithm is commonly known as the implicitly-
shifted QR algorithm, but it bears no resemblance to the basic QR algorithm (2). We
have described Francis’s algorithm and explained why it works without referring to
(2) in any way.

One might eventually like to see the connection between Francis’s algorithm and
the QR decomposition:

7The eigenvalues that are well approximated by (8) are indeed the same as the eigenvalues that are well
approximated by the shifts.
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Theorem 6. Consider a Francis iteration

Â = Q−1 AQ

of degree m with shifts ρ1, . . . , ρm . Let p(z) = (z − ρm) · · · (z − ρ1), as usual. Then
there is an upper-triangular matrix R such that

p(A) = QR.

In words, the transforming matrix Q of a Francis iteration is exactly the orthogonal
factor in the QR decomposition of p(A).

The proof can be found in [17], for example. Theorem 6 is also valid for a long
sequence of Francis iterations, for which ρ1, . . . , ρm is the long list of all shifts used
in all iterations (m could be a million). This is a useful tool for formal convergence
proofs. In fact, all formal convergence results for QR and related algorithms that I am
aware of make use of this tool or a variant of it.

In this paper we have focused on computation of eigenvalues. However, Francis’s
algorithm can be adapted in straightforward ways to the computation of eigenvectors
and invariant subspaces as well [6, 15, 17].

6. WHAT BECAME OF JOHN FRANCIS? From about 1970 on, Francis’s algo-
rithm was firmly established as the most important algorithm for the eigenvalue prob-
lem. Francis’s two papers [3, 4] accumulated hundreds of citations. As a part of the
celebration of the arrival of the year 2000, Dongarra and Sullivan [2] published a list
of the top ten algorithms of the twentieth century. “The QR algorithm” was on that list.
Francis’s work had become famous, but by the year 2000 nobody in the community of
numerical analysts knew what had become of the man or could recall ever having met
him. It was even speculated that he had died.

Two members of our community, Gene Golub and Frank Uhlig, working indepen-
dently, began to search for him. With the help of the internet they were able to find
him, alive and well, retired in the South of England. In August of 2007 Golub vis-
ited Francis at his home. This was just a few months before Gene’s untimely death
in November. Golub reported that Francis had been completely unaware of the huge
impact of his work. The following summer Uhlig was able to visit Francis and chat
with him several times over the course of a few days. See Uhlig’s papers [5, 14] for
more information about Francis’s life and career.

Uhlig managed to persuade Francis to attend and speak at the Biennial Numeri-
cal Analysis conference at the University of Strathclyde, Glasgow, in June of 2009.
With some help from Andy Wathen, Uhlig organized a minisymposium at that con-
ference honoring Francis and discussing his work and the related foundational work
of Rutishauser and Kublanovskaya. I had known of the Biennial Numerical Analysis
meetings in Scotland for many years and had many times thought of attending, but I
had never actually gotten around to doing so. John Francis changed all that. No way
was I going to pass up the opportunity to meet the man and speak in the same min-
isymposium with him. As the accompanying photograph shows, Francis remains in
great shape at age 75. His mind is sharp, and he was able to recall a lot about the QR
algorithm and how it came to be. We enjoyed his reminiscences very much.

A few months later I spoke about Francis and his algorithm at the Pacific Northwest
Numerical Analysis Seminar at the University of British Columbia. I displayed this
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Figure 1. John Francis speaks at the University of Strathclyde, Glasgow, in June 2009. Photo: Frank Uhlig.

photograph and remarked that Francis has done a better job than I have at keeping his
weight under control over the years. Afterward Randy LeVeque explained it to me:
Francis knows how to chase the bulge.
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The Role of Definitions in Mathematics

On p. 568 of the June–July 2010 issue of this MONTHLY, Oliver Heaviside is
quoted as saying “Mathematics is an experimental science, and definitions do
not come first, but later on.” It is interesting to compare this to Alfred Tarski’s
view of definitions:

In fact, I am rather inclined to agree with those who maintain that the mo-
ments of greatest creative advancement in science frequently coincide with
the introduction of new notions by means of definition.

Alfred Tarski, The semantic conception of truth
and the foundations of semantics, Philosophy

and Phenomenological Research 4 (1944), p. 359

—Submitted by John L. Leonard, University of Arizona
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