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Abstract

The Kronecker product has a rich and very pleasing algebra that supports a wide range of fast, elegant, and practical
algorithms. Several trends in scienti�c computing suggest that this important matrix operation will have an increasingly
greater role to play in the future. First, the application areas where Kronecker products abound are all thriving. These
include signal processing, image processing, semide�nite programming, and quantum computing. Second, sparse factor-
izations and Kronecker products are proving to be a very e�ective way to look at fast linear transforms. Researchers have
taken the Kronecker methodology as developed for the fast Fourier transform and used it to build exciting alternatives.
Third, as computers get more powerful, researchers are more willing to entertain problems of high dimension and this
leads to Kronecker products whenever low-dimension techniques are “tensored” together. c© 2000 Elsevier Science B.V.
All rights reserved.

1. Basic properties

If B ∈ Rm1×n1 and C ∈ Rm2×n2 , then their Kronecker product B ⊗ C is an m1 × n1 block matrix
whose (i; j) block is the m2 × n2 matrix bijC. Thus,

[
b11 b12
b21 b22

]
⊗


 c11 c12 c13
c21 c22 c23
c31 c32 c33


=




b11c11 b11c12 b11c13 b12c11 b12c12 b12c13
b11c21 b11c22 b11c23 b12c21 b12c22 b12c23
b11c31 b11c32 b11c33 b12c31 b12c32 b12c33
b21c11 b21c12 b21c13 b22c11 b22c12 b22c13
b21c21 b21c22 b21c23 b22c21 b22c22 b22c23
b21c31 b21c32 b21c33 b22c31 b22c32 b22c33



:

The basic properties of the Kronecker product are quite predictable:

(B⊗ C)T = BT ⊗ CT;

(B⊗ C)−1 = B−1 ⊗ C−1;
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(B⊗ C)(D ⊗ F) = BD ⊗ CF;

B⊗ (C ⊗ D) = (B⊗ C)⊗ D:

Of course, the indicated products and inverses must exist for the second and third identities to hold.
The entries of B⊗C and C⊗B consist of all possible products of a B-matrix entry with a C-matrix

entry and this raises the possibility that these two Kronecker products are related by a permutation.
The permutation involved is in fact the perfect shu�e. If p and q are positive integers and r =pq,
then the (p; q) perfect shu�e is the r × r matrix

Sp;q =



Ir(1 : q : r; :)
Ir(2 : q : r; :)

...
Ir(q : q : r; :)


 (1)

where Ir is the r × r identity. (The well-known “colon notation” used in MATLAB to designate
submatrices is being used here.) In e�ect, the matrix–vector product Sp;qx takes the “card deck” x,
splits it into p piles of length-q each, and then takes one card from each pile in turn until the deck
is reassembled. It can be shown that if B ∈ Rm1×n1 and C ∈ Rm2×n2 , then

C ⊗ B= Sm1 ; m2 (B⊗ C)STn1 ; n2 :

Henderson and Searle [36] survey the numerous connections between the Kronecker product and the
perfect shu�e. Additional observations about the Kronecker product may be found in [30,14,37,63].
Henderson et al. [35] look at the operation from the historical point of view.
Particularly important in computational work are the issues that surround the exploitation of struc-

ture and the application of matrix factorizations. By and large, a Kronecker product inherits structure
from its factors. For example,

if B and C are




nonsingular
lower(upper) triangular
banded
symmetric
positive de�nite
stochastic
Toeplitz
permutations
orthogonal




; then B⊗ C is




nonsingular
lower(upper) triangular
block banded
symmetric
positive de�nite
stochastic
block Toeplitz
a permutation
orthogonal




:

With respect to factorizations, the LU-with-partial-pivoting, Cholesky, and QR factorizations of B⊗C
merely require the corresponding factorizations of B and C:

B⊗ C = (PTB LBUA)⊗ (PTCLCUC) = (PB ⊗ PC)T(LB ⊗ LC)(UB ⊗ UC);

B⊗ C = (GBGT
B)⊗ (GCGT

C) = (GB ⊗ GC)(GB ⊗ GC)T;

B⊗ C = (QBRB)⊗ (QCRC) = (QB ⊗ QC)(RB ⊗ RC):

The same is true for the singular value and Schur decompositions if we disregard ordering issues.
In contrast, the CS and QR-with-column pivoting factorizations of B ⊗ C do not have simple
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relationships to the corresponding factorizations of B and C. (The matrix factorizations and decom-
positions mentioned in this paper are all described in [29]).
In Kronecker product work, matrices are sometimes regarded as vectors and vectors are sometimes

“made into” into matrices. To be precise about these reshapings we use the vec operation. If X ∈
Rm×n, then vec(X ) is an nm × 1 vector obtained by “stacking” X ’s columns. If C, X , and B are
matrices and the product CXBT is de�ned, then it is not hard to establish the following equivalence:

Y = CXBT ≡ y = (B⊗ C)x (2)

where x=vec(X ) and y=vec(Y ). Henderson and Searle [36] thoroughly discuss the vec=Kronecker
product connection.
A consequence of the above properties is that linear systems of the form (B ⊗ C)x = f can

be solved fast. For example, if B; C ∈ Rm×m, then x can be obtained in O(m3) 
ops via the LU
factorizations of B and C. Without the exploitation of structure, an m2×m2 system would normally
require O(m6) 
ops to solve.
As with any important mathematical operation, the Kronecker product has been specialized and

modi�ed to address new and interesting applications. Rauhala [58] presents a theory of “array alge-
bra” that applies to certain photogrammetric problems. See also [62]. Regalia and Mitra [60] have
used the Kronecker product and various generalizations of it to describe a range of fast unitary
transforms. A sample generalization that �gures in their presentation is

{A1; : : : ; Am}“⊗ ” B=




A1 ⊗ B(1; :)
A2 ⊗ B(2; :)

...
Am ⊗ B(m; :)




where A1; : : : ; Am are given matrices of the same size and B has m rows.
Another generalization, the strong Kronecker product, is developed in [61] and supports the

analysis of certain orthogonal matrix multiplication problems. The strong Kronecker product of an
m×p block matrix B=(Bij) and a p× n block matrix C=(Cij) is an m× n block matrix A=(Aij)
where Aij = Bi1 ⊗ C1j + · · ·+ Bip ⊗ Cpj:
Kronecker product problems arise in photogrammetry [59], image processing [34], computer vision

[47], and system theory [6]. They surface in the analysis of generalized spectra [2], stochastic
models [57], and operator theory [64]. They have even found their way into the analysis of chess
endgames [65].
To make sense of the “spread” of the Kronecker product, we have organized this paper around a

few important families of applications. These include the linear matrix equation problem, fast linear
transforms, various optimization problems, and the idea of preconditioning with Kronecker products.

2. Matrix equations

To researchers in numerical linear algebra, the most familiar problem where Kronecker products
arise is the Sylvester matrix equation problem. Here we are given F ∈Rm×m, G ∈Rn×n, and C ∈ Rm×n

and seek X ∈ Rm×n so that FX + XGT = C. Linear systems of this variety play a central role in
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control theory [13], Poisson equation solving [18], and invariant subspace computation [29]. In light
of Eq. (2), the act of �nding X is equivalent to solving the mn× mn linear system

(In ⊗ F + G ⊗ Im) vec(X ) = vec(C):

The Lyapunov problem results if F = G, a very important special case.
One family of e�ective methods for these problems involve reducing F and G to Hessenberg or

triangular form via orthogonal similarity transformations [5,27].
The more general matrix equation F1XGT

1 +F2XGT
2 =C can be handled using the generalized Schur

decomposition as discussed by Gardiner et al. [24]. However, these factorization approaches break
down for the general Sylvester matrix equation problem [49,74].

F1XGT
1 + · · ·+ FpXGT

p = C ≡ (G1 ⊗ F1 + · · ·+ Gp ⊗ Fp)vec(X ) = vec(C): (3)

Related to this are linear systems where the matrix of coe�cients has blocks that are themselves
Kronecker products, e.g.,


F11 ⊗ G11 · · · F1p ⊗ G1p

...
. . .

...
Fp1 ⊗ Gp1 · · · Fpp ⊗ Gpp






x1
...
xp


=



c1
...
cp


 : (4)

(Clearly the dimensions of the matrices Fij and Gij have to “make sense” when compared to the
dimensions of the vectors xi and ci.) This is equivalent to a system of generalized Sylvester equations:

p∑
j=1

FijXjGT
ij = Ci; i = 1 : p

where vec(Xi) = xi and vec(Ci) = ci for i = 1 : p. We can solve a linear system Ax = b fast if A is
a Kronecker product. But fast solutions seem problematical for (4).
A problem of this variety arises in conjunction with the generalized eigenproblem M − �N where

important subspace calculations require the solution of a system of the form[
In ⊗ A −BT ⊗ Im
In ⊗ D −ET ⊗ Im

] [
vec(R)
vec(L)

]
=

[
vec(C)
vec(F)

]
:

Here the matrices A;D ∈ Rm×m, B; E ∈ Rn×n, and C; F ∈ Rm×n are given and the matrices L; R ∈ Rm×n

are sought [42].
Another area where block systems arise with Kronecker product blocks is semide�nite program-

ming. There has been an explosion of interest in this area during the last few years due largely to
the applicability of interior point methods; see [69,71]. An important feature of these methods is that
they frequently require the solution of linear systems that involve the symmetric Kronecker product
. For symmetric X ∈ Rn×n and arbitrary B; C ∈ Rn×n this operation is de�ned by

(B C)svec(X ) = svec
(
1
2
(CXBT + BXCT)

)

where the “svec” operation is a normalized stacking of X ’s subdiagonal columns, e.g.,

X =


 x11 x12 x13
x21 x22 x23
x31 x32 x33


⇒ svec(X ) = [x11;

√
2x21;

√
2x31; x22;

√
2x32 x33]

T;
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See the work of Alizadeh et al. Among other things they discuss the e�cient solution of systems
of the form

 0 AT I
A 0 0

Z I 0 X I





�x
�y
�z


=


 rd
rp
rc


 :

3. Least squares

Least squares problems of the form

min||(B⊗ C)x − b||
can be e�ciently solved by computing the QR factorizations (or SVDs) of B and C; [21,22]. Barrlund
[4] shows how to minimize ||(A1⊗A2)x−f|| subject to the constraint that (B1⊗B2)x=g, a problem
that comes up in surface �tting with certain kinds of splines.
Coleman et al. [11] describe an interesting least-squares problem that arises in segmentation anal-

ysis. It is the minimization of∣∣∣∣∣∣
∣∣∣∣∣∣W




 In ⊗ Dm

Dn ⊗ Im
�I


 x −


 b1
b2
0





∣∣∣∣∣∣
∣∣∣∣∣∣
2

(5)

where W is diagonal, and the D matrices are upper bidiagonal. The scaling matrix W and the �I
block seem to rule out obvious fast factorization approaches.
On the other hand, LS problems of the form

min
∣∣∣∣
∣∣∣∣
[
B1 ⊗ C1
B2 ⊗ C2

]
x − b

∣∣∣∣
∣∣∣∣
2

(6)

can be solved fast by computing the generalized singular value decomposition of the pairs (B1; B2)
and (C1; C2):

B1 = U1BD1BX T
B B2 = U2BD2BX T

B ;
C1 = U1CD1CX T

C C2 = U2CD2CX T
C :

Here, the U ’s are orthogonal, the D’s are diagonal, and the X ’s are nonsingular. With these decom-
positions the matrices in (6) can be transformed to diagonal form since[

B1 ⊗ C1
B2 ⊗ C2

]
=

[
U1B ⊗ U2B 0

0 U1C ⊗ U2C

] [
D1B ⊗ D2B

D1C ⊗ D2C

]
X T

B ⊗ X T
C :

The solution of the converted problem is straightforward and the overall cost of the procedure is
essentially the cost of the two generalized SVDs.
The total least squares (TLS) problem is another example of just how little it takes to sti
e the

easy exploitation Kronecker products in a matrix computation. A TLS solution to (B ⊗ C)x ≈ b
requires the computation of the smallest singular value and the associated left and right singular
vectors of the augmented matrix

M = [B⊗ C | b]:
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If B ∈ Rm1×n1 and C ∈ Rm2×n2 , then the SVD of B ⊗ C costs O(m1n21 + m2n22) while the SVD of
M appears to require O((m1m2)(n1n2)2). However, in this case the special structure of M permits
the fast calculation of the required minimum singular triple via the coupling of condition estimation
ideas with the QR factorization of B⊗ C.

4. Tensoring low-dimension ideas

Tensor product “ideas” in approximation and interpolation also lead to Kronecker product prob-
lems. In these multidimensional situations the “overall” method involves repetition of the same
1-dimensional idea in each coordinate direction. For example, if 1-dimensional quadrature rules of
the form

∫
f(x) dx ≈ ∑

wif(xi) ≡ wTf(x) are applied in the x; y, and z directions to the triple
integral

I =
∫ b1

a1

∫ b2

a2

∫ b3

a3
g(x; y; z) dx dy dz;

then we obtain

I ≈
nx∑
i=1

ny∑
j=1

nz∑
k=1

w(x)i w(y)j w(z)k g(xi; yj; zk) = (w(x) ⊗ w(y) ⊗ w(z))Tg(x ⊗ y ⊗ z)

where x ∈ Rnx ; y ∈ Rny , and z ∈ Rnz are vectors of abscissa values and g(x ⊗ y ⊗ z) designates the
vector of values obtained by evaluating g at each component of x⊗ y⊗ z. For further details about
this kind of multidimensional problem [15,16]. The computationally oriented papers by Pereyra and
Scherer [55] and de Boor [17] are motivated by these tensor product applications and are among
the earliest references that discuss how to organize a Kronecker product calculation.
The ability to solve problems with increasingly high dimension because of very powerful computers

partially explains the heightened pro�le of the Kronecker product in scienti�c computing. Interest in
higher-order statistics is a good example. Roughly speaking, second-order statistics revolve around
the expected value of xxT where x is a random vector. In higher-order statistics the calculations
involve the “cumulants” x ⊗ x ⊗ · · · ⊗ x. (Note that vec(xxT) = x ⊗ x.) [67,1]. Related Kronecker
product computations arise in Volterra �ltering as presented in [54,53]. A collection of very high
dimensional Kronecker product problems that arise in statistical mechanics and quantum mechanics
is discussed [63].

5. Fast transforms

Kronecker products and various generalizations are what “drive” many fast transform algorithms.
Consider the fast Fourier transform (FFT) with n= 2t . If Pn is the bit reversal permutation

Pn = S2; n=2(I2 ⊗ S2; n=4) · · · (In=4 ⊗ S2;2)

and !n = exp(−2�i=n), then the discrete Fourier transform (DFT) matrix Fn = (!pq
n ) ∈ Cn×n can be

factored as Fn = At · · ·A1Pn where

Aq = Ir ⊗
[
IL=2 
L=2

IL=2 −
L=2

]
;
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with L = 2q; r = n=L; 
L=2 = diag(1; !L; : : : ; !
L=2−1
L ), and !L = exp(−2�i=L). Based on this “sparse”

factorization of the DFT matrix we obtain the Cooley–Tukey FFT framework for computing the
DFT y = Fnx = At · · ·A1Pnx:

x ← Pnx
for k = 1 : t

x ← Aqx
end
y ← x

Tolimieri et al. [70] and Van Loan [72] have shown how the organization of the FFT is clari�ed
through the “language” of Kronecker products. Di�erent FFT algorithms correspond to di�erent
factorizations of Fn. The value of this point of view is that it uni�es the literature and exposes
simple connections between seemingly disparate algorithms. For example, the Gentleman–Sande FFT
framework results by taking transposes in Fn=At · · ·A1Pn and noting that Fn and Pn are symmetric:

for k = 1 : t
x ← ATq x

end
y ← Pnx

The evolution of FFT ideas and algorithms would have proceeded much more rapidly and with
greater clarity from the famous 1965 Cooley–Tukey paper onwards had the Kronecker notation been
more actively employed.
Huang et al. [39] have developed a parallel programming methodology that revolves around

the Kronecker product. Related papers include Johnson et al. [41], and Granata et al. [31,32].
Pitsianis [56] built a “Kronecker compiler” that permits the user to specify algorithms in a
Kronecker product language. The compiler is based on a set of term rewriting rules that trans-
late high-level, Kronecker-based matrix descriptions of an algorithm into any imperative language
such as C, MATLAB or Fortran. The e�ciency of the automatically generated code is shown to be
excellent.
The Kronecker product methodology extends beyond the FFT and the related sine=cosine trans-

forms. Indeed, Regalia and Mitra [60] have used the Kronecker product and various generalizations
of it to describe a range of fast unitary transforms; See also [40] for Kronecker presentations of the
Walsh–Hadamard, slant, and Hartley transforms. Strohmer [66] uses a Kronecker product framework
to develop factorizations for the Gabor frame operator while Fijany and Williams [23] do the same
thing with quantum wavelet transforms. Kumar et al. [48] use Kronecker product ideas to develop
a memory-e�cient implementation of the Strassen matrix multiply.
Kronecker products and sparse factorizations are as central to fast wavelet transforms as they are

to the FFT. Consider the Haar wavelet transform y =Wnx where n = 2t . The transform matrix Wn

is de�ned by

Wn =
[
Wm ⊗

(
1
1

) ∣∣∣∣ Im ⊗
(
1
−1

)]
n= 2m
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with W1 = [1]. It can be shown that

Wn = S2;m(W2 ⊗ Im)
[
Wm 0
0 Im

]
n= 2m

and from this “splitting” it is possible to show that Wn = Ht · · ·H1 where

Hq =
[
S2; L∗ 0
0 In−L

] [
W2 ⊗ IL∗ 0

0 In−L

]
L= 2q; L∗ = L=2:

The fast Haar transform then proceeds as a sequence of matrix–vector products, i.e., x ← H1x; x ←
H2x; : : : ; x ← Htx.
More complicated wavelets require more sophisticated Kronecker manipulations in order to derive

the underlying sparse factorization. For example, the n = 4 transform matrix for the Daubechies
wavelet is given by

D4 =



c0 c1 c2 c3
c3 −c2 c1 −c0
c2 c3 c0 c1
c1 −c0 c3 −c2


 where



c0
c1
c2
c3


= 1

4
√
2



1 +
√
3

3 +
√
3

3−
√
3

1−
√
3


 :

It is easy to verify that D4 is orthogonal. The n= 8 version is given as follows:

D8 =




c0 c1 c2 c3 0 0 0 0
c3 −c2 c1 −c0 0 0 0 0
0 0 c0 c1 c2 c3 0 0
0 0 c3 −c2 c1 −c0 0 0
0 0 0 0 c0 c1 c2 c3
0 0 0 0 c3 −c2 c1 −c0
c2 c3 0 0 0 0 c0 c1
c1 −c0 0 0 0 0 c3 −c2




which clearly has a replicated block structure. It is possible to describe this structure quite elegantly
with a generalized Kronecker product. It is then a straightforward exercise to obtain a splitting that
relates D8 to D4 and more generally, Dn to Dn=2. From the splitting one can then derive the sparse
factorization associated with the underlying fast transform [23].
It is almost always the case that behind every fast linear transform is a sparse, Kronecker-based,

factorization of the transform matrix. Notable exceptions are the recent and very interesting fast
algorithms whose complexity has the form cn or cn log n where c is a constant that depends on the
precision required. Examples include the fast Gauss transform of Greengard and Strain [33] and the
non-uniformly spaced FFT of Dutt and Rokhlin [19]. It is interesting to conjecture whether these
algorithms can be described in terms of some approximate sparse, Kronecker-based factorization of
the underlying transform matrix.
Fast transforms often require various matrix transpositions of the data and these operations also

submit to Kronecker product descriptions. For example, it follows from (1) that if A ∈ Rm×n and
B= AT, then vec(B) = Sn;m · vec(A). It turns out that di�erent “multi-pass” transposition algorithms
correspond to di�erent factorizations of the underlying perfect shu�e. If

Sn;m = �t · · ·�1 (7)
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then B= AT can be computed with t passes through the data as follows:

a= vec(A)
for k = 1 : t

a← �ka
end
De�ne B ∈ Rn×m by vec(B) = a.

The idea is to choose a factorization (7) so that the data motion behind the operation kth pass, i.e.,
a← �ka, is in harmony with the architecture of the underlying memory hierarchy.
To illustrate this factorization idea, it can be shown that if m= pn, then Sn;m = �2�1 where

�1 = Sn;p ⊗ In;

�2 = Ip ⊗ Sn;n:

The �rst pass b(1) =�1vec(A) corresponds to a block transposition while b(2) =�2b(1) carries out the
transposition of the blocks. For example, if p= 4 and

A=




A1

A2

A3

A4


 ; Ai ∈ Rn×n

then the �1 update leaves us with

B(1) = [A1 A2 A3 A4 ]:

During the �2 update the individual blocks are transposed yielding

B= B(2) = [AT1 AT2 AT3 AT4 ]:

See [72] for more details about factorizations and matrix transposition.

6. The nearest Kronecker product problem

Suppose A∈Rm×n is given with m=m1m2 and n=n1n2. For these integer factorizations the nearest
Kronecker product (NKP) problem involves minimizing

�(B; C) = ||A− B⊗ C||F (8)

where B ∈ Rm1×n1 and C ∈Rm2×n2 . Van Loan and Pitsianis [73] show how to solve the NKP problem
using the singular value decomposition of a permuted version of A. This result is central to much
of the research proposal and so we use a small example to communicate the main idea. Suppose
m1 = 3 and n1 = m2 = n2 = 2. By carefully thinking about the sum of squares that de�ne � we see
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that

�(B; C) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣




a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44
a51 a52 a53 a54
a61 a62 a63 a64



−


 b11 b12
b21 b22
b31 b32


⊗ [

c11 c12
c21 c22

]
∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣
F

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣




a11 a21 a12 a22
a31 a41 a32 a42
a51 a61 a52 a62
a13 a23 a14 a24
a33 a43 a34 a44
a53 a63 a54 a64



−




b11

b21

b31

b12

b22

b32



[ c11 c21 c12 c22 ]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
F

:

Denote the preceeding 6× 4 matrix by R(A) and observe that

R(A) =




vec(A11)T

vec(A21)T

vec(A31)T

vec(A12)T

vec(A22)T

vec(A32)T



:

It follows that

�(B; C) = ||R(A)− vec(B)vec(C)T||F
and so the act of minimizing � is equivalent to �nding a nearest rank-1 matrix to R(A). The nearest
rank-1 matrix problem has a well-known SVD solution [29]. In particular, if

U TR(A)V = � (9)

is the SVD of R(A), then optimum B and C are de�ned by

vec(Bopt) =
√
�1U (:; 1) vec(Copt) =

√
�1V (:; 1):

The scalings are arbitrary. Indeed, if Bopt and Copt solve the NKP problem and � 6= 0, then � · Bopt
and (1=�) · Copt are also optimal.
In general, if A= (Aij) is an m1 × n1 block matrix with m2 × n2 blocks, then

Ã=R(A) ∈ Rm1n1×m2n2 ⇒ Ã(i + (j − 1)m1; :) = vec(Aij)T; i = 1 : m1; j = 1 : n1:

If R(A)) has rank r̃ and SVD (9), then

A=
r̃∑

k=1

�kUk ⊗ Vk
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where vec(Uk) = U (:; k) and vec(Vk) = V (:; k) for k = 1 : r̃. We refer to this as the Kronecker
Product SVD (KPSVD) of A associated with the integer factorizations m=m1m2 and n=n1n2. Note
that for these integers,

Ar =
r∑

k=1

�kUk ⊗ Vk r6r̃ (10)

is the closest matrix to A (in the Frobenius norm) that is the sum of r Kronecker products.
If A is large and sparse and r is small, then the Lanzcos SVD iteration of Golub, Luk, and Overton

[26] can e�ectively be used to compute the singular vectors of R(A) from which we can build the
optimal Kronecker product factors. An implementation is available in [12] and some preliminary
experience with the method is discussed in [73,56].
Certain situations permit one to “cut corners” in the above SVD computation when solving the

NKP problem:
• If A is the sum of p Kronecker products as in the generalized Sylvester equation problem (3),
then rank(R(A))6p.

• If A is an n1× n1 block Toeplitz matrix with n2× n2 Toeplitz blocks, then it is not hard to show
that the rank of R(A) is less than min{2n1 + 1; 2n2 + 1} [51].

In each of these situations the matrix R(A) is rank de�cient.

7. Other NKP problems

For A ∈ Rn×n with n= n1n2 we refer to the problem of minimizing

 (B; C) = ||A(B⊗ C)− In||F B ∈ Rn1×n1 ; C ∈ Rn2×n2 (11)

as the inverse nearest Kronecker product problem. This problem does not have an explicit SVD
solution and so we must approach it as a structured nonlinear least squares problem. It can be shown
that

vec(A(B⊗ C)) = (In ⊗ A)vec(B⊗ C) = (In ⊗ A)P (vec(B)⊗ vec(C))
where P is the n2 × n2 permutation matrix de�ned by

P = In1 ⊗ Sn1 ;n2 ⊗ In2
Thus, minimizing  is equivalent to minimizing the 2-norm of

F(B; C) = (In ⊗ A)P (vec(B)⊗ vec(C))− vec(In):
The Jacobian of this function is (In⊗A)P[(In⊗vec(C)) vec(B)⊗In)]. Having exposed these structures
we see that there are several ways to approach the inverse NKP problem. Since it is a separable
least-squares problem, the variable projection methods discussed in [28,46] or the ideas in [3] are
applicable.
The NKP problem has a multiple factor analog in which we try to approximate A ∈ Rm×n with

a matrix of the form C1 ⊗ · · · ⊗ Cp. In particular, if m= m1 · · ·mp and n= n1 · · · np, then we seek
Ci ∈ Rmi×ni ; i=1 : p so that �(C1; : : : ; Cp)= ||A−C1⊗ · · · ⊗Cp||F is minimized. Closed-form SVD
solutions do not appear to be possible if p¿ 2. The inverse NKP problem also has a multiple factor
generalization.
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If A is structured, then it is sometimes the case that the B and C matrices that solve the NKP
problem are similarly structured. For example, if A is symmetric and positive de�nite, then the same
can be said of Bopt and Copt (if properly normalized). Likewise, if A is nonnegative, then the optimal
B and C can be chosen to be nonnegative. These and other structured NKP problems are discussed
in [73,56], but a number of interesting open questions remain.
Suppose A ∈ Rn×n and that n= m2. A trace minimization problem that we are aware of requires

the minimization of ||A− �B⊗B||F where B ∈ Rm×m and �=±1. This leads to a nearest symmetric
rank-1 problem of the form

min
�;b
||R(A)− �bbT||F :

A related problem arises in neural networks [38]. Given A ∈ Rn×n with n = m2, �nd B ∈ Rm×m so
that ||A− B⊗ BT||F is minimized. This leads to the minimization of

||R(A)− vec(B)vec(BT)T||F = ||R(A)Sm;m − vec(B)vec(B)T||F :
The linearly constrained NKP problem

min
FT vec(B)=r
GT vec(C)=t

||A− B⊗ C||F

leads to a linearly constrained nearest rank-1 problem

min
FTb=r
GTc=t

||Ã− bcT||F

where Ã=R(A); b= vec(B) and c= vec(C). We suppress the dimensions of the matrices involved
and just assume that the linear constraint equations are underdetermined. Following Golub [25] we
compute the QR factorizations

F = QF

[
RF

0

]
G = QG

[
RG

0

]
for then the problem transforms to

min
b2 ;c2

∣∣∣∣∣
∣∣∣∣∣
[
Ã11 − b1cT1 Ã12 − b1cT2
Ã21 − b2cT1 Ã22 − b2cT2

]∣∣∣∣∣
∣∣∣∣∣
F

where

QT
Fb=

[
b1
b2

]
; QT

Gc =
[
c1
c2

]
; QT

FÃQG =

[
Ã11 Ã12
Ã21 Ã22

]

and RTFb1 = r and RTGc1 = t. Thus, we are led to the minimization of the function

�(b2; c2) = ||Ã22 − b2cT2 ||2F + ||Ã12 − b1cT2 ||2F + ||Ã21 − b2cT1 ||2F :
If r and t are zero, then b1 and c1 are zero and we are left with a reduced version of the nearest rank-1
matrix problem. This homogeneous situation arises when we wish to impose sparsity constraints on
the B and C matrices or when we require the optimizing B and=or C to have circulant, Toeplitz,
Hankel, or some other structure of that type. In the nonhomogeneous case we are again confronted
with a bilinear least-square problem. (The inhomogeneous problem would arise, for example, if we
required the B and C matrices to have columns that sum to one.)
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8. Preconditioners

In recent years the “culture” of fast transforms and Kronecker products has found its way into
the linear system solving area through the design of e�ective preconditioners. Chan [8] proposed
solving large Toeplitz systems Tx= b using a circulant preconditioner C that minimizes ||C − T ||F .
The product of a circulant matrix and a vector can be carried out in O(n log n) 
ops using the FFT;
See also [9] and [10].
Similar in spirit is the design of Kronecker product preconditioners. The idea is to approximate

the matrix of coe�cients A with a Kronecker product B⊗ C and to use B⊗ C as a preconditioner
noting that linear systems of the form (B⊗C)z=r can be solved fast. One method for generating the
Kronecker factors B and C is to minimize ||A− B⊗ C||F . Other approaches tailored to applications
in image restoration have been o�ered by Nagy [51], Kamm and Nagy [43–45] and Thirumalai [68];
See also [20,52,7].
The success of many numerical methods hinge on e�cient linear equation solving and this in turn

often requires �nding the “right” preconditioner for the coe�cient matrix A. To be e�ective, the
preconditioner M must “capture the essence” of A and have the property that systems of the form
Mz = r are easily solved.
The idea of setting M to be the nearest Kronecker product to A is studied in [73]. When applied

to a model problem (Poisson’s equation on a rectangle) the results compared favorably with the
best alternatives, e.g., the incomplete Cholesky preconditioner. This work can be extended by (a)
looking at 3D problems where the resulting linear system is the sum of three Kronecker products
and (b) considering non-uniform mesh settings where the linear system is the sum of a few “near”
Kronecker products.

9. Conclusion

Our goal in this paper is to point to the widening use of the Kronecker product in numerical linear
algebra. Research in this area will heighten the pro�le of the Kronecker product throughout the �eld
of matrix computations and will make it easier for researchers to spot Kronecker “opportunities”
in their work. This phenomena is not without precedent. The development of e�ective algorithms
for the QR and SVD factorizations turned many “ATA” problems into least-square=singular-value
calculations. Likewise, with the development of the QZ algorithm [50] engineers with “standard”
eigenproblems of the form B−1Ax=�x came to approach them as a generalized eigenproblems of the
form Ax = �Bx. The point we are making is that if an infrastructure of e�ective Kronecker-product
algorithms is built, then Kronecker product problems will “come out of the woodwork.”

References

[1] T.F. Andre, R.D. Nowak, B.D. Van Veen, Low rank estimation of higher order statistics, IEEE Trans. Signal Process.
45 (1997) 673–685.

[2] H.C. Andrews, J. Kane, Kronecker matrices, computer implementation, and generalized spectra, J. Assoc. Comput.
Mach. 17 (1970) 260–268.

[3] R.H. Barham, W. Drane, An algorithm for least squares estimation of nonlinear parameters when some of the
parameters are linear, Technometrics 14 (1972) 757–766.



98 C.F. Van Loan / Journal of Computational and Applied Mathematics 123 (2000) 85–100

[4] A. Barrlund, E�cient solution of constrained least squares problems with Kronecker product structure, SIAM J.
Matrix Anal. Appl. 19 (1998) 154–160.

[5] R.H. Bartels, G.W. Stewart, Solution of the equation AX + XB = C, Comm. ACM 15 (1972) 820–826.
[6] J.W. Brewer, Kronecker products and matrix calculus in system theory, IEEE Trans. Circuits Systems 25 (1978)

772–781.
[7] D. Calvetti, L. Reichel, Application of ADI iterative methods to the image restoration of noisy images, SIAM J.

Matrix Anal. Appl. 17 (1996) 165–174.
[8] T.F. Chan, An optimal circulant preconditioner for Toeplitz systems, SIAM J. Sci. Statist. Comput. 9 (1988) 766–771.
[9] T.F. Chan, J.A. Olkin, Preconditioners for Toeplitz-block matrices, Numer. Algorithms 6 (1993) 89–101.
[10] R. Chan, X.-Q. Jin, A family of block preconditioners for block systems, SIAM J. Sci. Statist. Comput. 13 (1992)

1218–1235.
[11] T.F. Coleman, Y. Li, A. Mariano, Separation of pulmonary nodule images using total variation minimization,

Technical Report, Cornell Theory Center, Ithaca, New York, 1998.
[12] J. Cullum, R.A. Willoughby, Lanczos Algorithms for Large Sparse Symmetric Eigenvalue Computations, Vol. I

(Theory), II (Programs), Birkhauser, Boston, 1985.
[13] K. Datta, The matrix equation XA− BX = R and its applications, Linear Algebra Appl. 109 (1988) 91–105.
[14] M. Davio, Kronecker products and shu�e algebra, IEEE Trans. Comput. c-30 (1981) 116–125.
[15] P. Davis, P. Rabinowitz, Numerical Integration, Blaisdell, Waltham, MA, 1967.
[16] C. de Boor, A Practical Guide to Splines, Springer, New York, 1978.
[17] C. de Boor, E�cient computer manipulation of tensor products, ACM Trans. Math. Software 5 (1979) 173–182.
[18] F.W. Dorr, The direct solution of the discrete poisson equation on a rectangle, SIAM Rev. 12 (1970) 248–263.
[19] A. Dutt, V. Rokhlin, Fast fourier transforms for nonequispaced data, SIAM J. Sci. Comput. 14 (1993) 1368–1398.
[20] L. Eldin, I. Skoglund, Algorithms for the regularization of Ill-conditioned least squares problems with tensor product

structure and applications to space-variant image restoration, Technical Report LiTH-Mat-R-82-48, Department of
Mathematics, Linkoping University, Sweden, 1982.

[21] D.W. Fausett, C.T. Fulton, Large least squares problems involving Kronecker products, SIAM J. Matrix Anal. 15
(1994) 219–227.

[22] D.W. Fausett, C.T. Fulton, H. Hashish, Improved parallel QR method for large least squares problems involving
Kronecker products, J. Comput. Appl. Math. (1997).

[23] A. Fijany, C.P. Williams, Quantum wavelet transforms: fast algorithms and complete circuits, Technical Report
9809004, Los Alamos National Laboratory, Los Alamos, New Mexico, 1998.

[24] J. Gardiner, M.R. Wette, A.J. Laub, J.J. Amato, C.B. Moler, Algorithm 705: a FORTRAN-77 software package for
solving the Sylvester matrix equation AXBT + CXDT = E, ACM Trans. Math. Software 18 (1992) 232–238.

[25] G.H. Golub, Some modi�ed eigenvalue problems, SIAM Rev. 15 (1973) 318–344.
[26] G.H. Golub, F. Luk, M. Overton, A block Lanzcos method for computing the singular values and corresponding

singular vectors of a matrix, ACM Trans. Math. Software 7 (1981) 149–169.
[27] G.H. Golub, S. Nash, C. Van Loan, A Hessenberg-Schur method for the matrix problem AX +XB=C, IEEE Trans.

Automat. Control AC-24 (1979) 909–913.
[28] G.H. Golub, V. Pereya, The di�erentiation of pseudoinverses and nonlinear least squares problems whose variables

separate, SIAM J. Numer. Anal. 10 (1973) 413–432.
[29] G.H. Golub, C. Van Loan, Matrix Computations, 3rd Edition, Johns Hopkins University Press, Baltimore, MD, 1996.
[30] A. Graham, Kronecker Products and Matrix Calculus with Applications, Ellis Horwood, Chichester, England, 1981.
[31] J. Granata, M. Conner, R. Tolimieri, Recursive fast algorithms and the role of the tensor product, IEEE Trans. Signal

Process. 40 (1992) 2921–2930.
[32] J. Granata, M. Conner, R. Tolimieri, The tensor product: a mathematical programming language for FFTs and other

fast DSP operations, IEEE SP Mag. (January 1992) 40–48.
[33] L. Greengard, J. Strain, The fast Gauss transform, SIAM J. Sci. Statist. Comput. 12 (1991) 79–94.
[34] S.R Heap, D.J. Lindler, Block iterative restoration of astronomical images with the massively parallel processor

Proceedings of the First Aerospace Symposium on Massively Parallel Scienti�c Computation, 1986, pp. 99–109.
[35] H.V. Henderson, F. Pukelsheim, S.R. Searle, On the history of the Kronecker product, Linear Multilinear Algebra

14 (1983) 113–120.



C.F. Van Loan / Journal of Computational and Applied Mathematics 123 (2000) 85–100 99

[36] H.V. Henderson, S.R. Searle, The vec-permutation matrix, the vec operator and Kronecker products: a review, Linear
Multilinear Algebra 9 (1981) 271–288.

[37] R.A. Horn, C.A. Johnson, Topics in Matrix Analysis, Cambridge University Press, New York, 1991.
[38] R.M. Hristev, private communication, 1998.
[39] C-H. Huang, J.R. Johnson, R.W. Johnson, Multilinear algebra and parallel programming, J. Supercomput. 5 (1991)

189–217.
[40] A.K. Jain, Fundamentals of Digital Image Processing, Prentice-Hall, Englewood Cli�s, NJ, 1989.
[41] J. Johnson, R.W. Johnson, D. Rodriguez, R. Tolimieri, A methodology for designing, modifying, and implementing

fourier transform algorithms on various architectures, Circuits Systems Signal Process. 9 (1990) 449–500.
[42] B. Kagstrom, Perturbation analysis of the generalized Sylvester equation (AR − LB; DR − LE) = (C; F), SIAM J.

Matrix Anal. Appl. 15 (1994) 1045–1060.
[43] J. Kamm, J.G. Nagy, Kronecker product and SVD approximations in image restoration, Linear Algebra Appli.

(1998a), to appear.
[44] J. Kamm, J.G. Nagy, Kronecker product and SVD approximations for separable spatially variant blurs, SMU

Mathematics Technical Report 98-04, Dallas, TX, 1998b.
[45] J. Kamm, J.G. Nagy, Optimal kronecker product approximation of block Toeplitz matrices, SMU Mathematics

Technical Report 98-05, Dallas, TX, 1998c.
[46] L. Kaufman, A variable projection method for solving separable nonlinear least squares problems, BIT 15 (1975)

49–57.
[47] B. Klaus, P. Horn, Robot Vision, MIT Press, Cambridge, MA, 1990.
[48] B. Kumar, C.H. Huang, J. Johnson, R.W. Johnson, P. Sadayappan, A tensor product formulation of Strassen’s

matrix multiplication algorithm with memory reduction, Seventh International Parallel Processing Symposium, 1993,
pp. 582–588.

[49] P. Lancaster, Explicit solution of linear matrix equations, SIAM Rev. 12 (1970) 544–566.
[50] C.B. Moler, G.W. Stewart, An algorithm for generalized matrix eigenvalue problems, SIAM J. Numer. Anal. 10

(1973) 241–256.
[51] J.G. Nagy, Decomposition of block Toeplitz matrices into a sum of Kronecker products with applications in image

processing, SMU Mathematics Technical Report 96-01, Dallas, TX, 1996.
[52] J.G. Nagy, D.P. O’Leary, Restoring images degraded by spatially-variant blur, SIAM J. Sci. Comput. 19 (1998)

1063–1082.
[53] R.D. Nowak, Penalized least squares estimation of higher order statistics, IEEE Trans. Signal Process. 46 (1998)

419–428.
[54] R.D. Nowak, B. Van Veen, Tensor product basis approximations for Volterra �lters, IEEE Trans Signal Process. 44

(1996) 36–50.
[55] V. Pereyra, G. Scherer, E�cient computer manipulation of tensor products with applications to multidimensional

approximation, Math. Comp. 27 (1973) 595–604.
[56] N.P. Pitsianis, The Kronecker product in approximation, fast transform generation, Ph.D. Thesis, Department of

Computer Science, Cornell University, 1997.
[57] J.H. Pollard, On the use of the direct matrix product in analyzing certain stochastic population models, Biometrika

53 (1966) 397–415.
[58] U.A. Rauhala, Introduction to array algebra, Photogrammetric Eng. Remote Sensing 46 (2) (1980) 177–182.
[59] U.A. Rauhala, D. Davis, K. Baker, Automated DTM validation and progressive sampling algorithm of �nite element

array relaxation, Photogrammetric Eng. Remote Sensing 55 (1989) 449–465.
[60] P.A. Regalia, S. Mitra, Kronecker products, unitary matrices, and signal processing applications, SIAM Rev. 31

(1989) 586–613.
[61] J. Seberry, X-M. Zhang, Some orthogonal matrices constructed by strong Kronecker product multiplication, Austral.

J. Combin. 7 (1993) 213–224.
[62] R.A. Snay, Applicability of array algebra, Rev. Geophys. Space Phys. 16 (1978) 459–464.
[63] W-H. Steeb, Matrix Calculus and Kronecker Product with Applications and C++ Programs, World Scienti�c

Publishing, Singapore, 1997.
[64] F. Stenger, Kronecker product extensions of linear operators, SIAM J. Numer. Anal. 5 (1968) 422–435.
[65] L. Stiller, Multilinear algebra and chess endgames, in: Computational Games, Vol. 29, MSRI Publications.



100 C.F. Van Loan / Journal of Computational and Applied Mathematics 123 (2000) 85–100

[66] T. Strohmer, Numerical algorithms for discrete gabor expansions, in: H.G. Feichtinger, T. Strohmer (Eds.), Gabor
Analysis and Algorithms, Birkhauser, Basel, 1998, pp. 267–294.

[67] A. Swami, J. Mendel, Time and lag recursive computation of cumulants from a state-space model, IEEE Trans.
Automat. Control 35 (1990) 4–17.

[68] S. Thirumalai, High performance algorithms to solve Toeplitz and block Toeplitz matrices, Ph.D. Thesis, University
of Illinois, Urbana, IL, 1996.

[69] M.J. Todd, On search directions in interior point methods for semide�nite programming, Optim. Methods Software,
(1998), to appear.

[70] R. Tolimieri, M. An, C. Lu, Algorithms for Discrete Fourier Transform and Convolution, Springer, New York, 1989.
[71] L. Vandenberghe, S. Boyd, Semide�nite Programming, SIAM Rev. 38 (1996) 27–48.
[72] C. Van Loan, Computational Frameworks for the Fast Fourier Transform, SIAM Publications, Philadelphia, PA,

1992.
[73] C. Van Loan, N.P. Pitsianis, Approximation with Kronecker products, in: M.S. Moonen, G.H. Golub (Eds.), Linear

Algebra for Large Scale and Real Time Applications, Kluwer Publications, Dordrecht, 1992, pp. 293–314.
[74] W.J. Vetter, Vector structures, solutions of linear matrix equations, Linear Algebra Appl. 10 (1975) 181–188.


