
Cálculo III - 2014
Exerćıcio extra de Páscoa

A função Γ(x) e
as bacias de atração de pontos fixos

Resumo

O t́ıtulo sugere uma relação que não existe... São dois problemas
diferentes: a função Γ(x) e as bacias de atração de pontos fixos de
EDO...

1 A função Γ(x)

Como conversamos em aula, a função Γ(x) é definida como

Γ(x) =

∫

∞

0

tx−1e−t dx. (1)

No contexto das transformadas de Laplace, a função Γ(x) é util porque nos
permite estender o resultado

L[tn] = n!

sn+1
(2)
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para n não inteiro. Vejamos:

L[tα] =
∫

∞

0

tαe−st dt, (3)

para α ∈ R pode ser escrita, mediante a troca de variáveis st = τ e supondo,
como sempre, s > 0,

L[tα] = 1

sα+1

∫

∞

0

ταe−τ dτ =
Γ(α+ 1)

sα+1
, (4)

de onde se obtem, diretamente, que Γ(n) = (n− 1)! para n inteiro positivo.
Note que esta definição é compat́ıvel com 0! = 1.

A função Γ(x) não pode ser expressa a partir de funções elementares.
Porém, ela tem várias propriedades que permitem que infiramos seu compor-
tamento para todo x ∈ R. Esta primeira parte do Exerćıcio de Páscoa é a
demonstração de várias dessas propriedades com a finalidade de contruirmos
a função Γ(x) para todo x ∈ R. São estas:

1. Mostre que Γ(x) satisfaz a seguinte relação funcional Γ(x+1) = xΓ(x),
para x > 0. Use esta propriedade para estender Γ(x) para todo x real
positivo a partir, por exemplo, dos valores de Γ(x) no intervalo (0, 1].

2. Mostre que limx→0+ Γ(x) → ∞.

3. Mostre que Γ
(

1

2

)

=
√
π. (Dica: reduza o problema ao cálculo da

integral gaussiana).

4. Mostre que Γ′′(x) > 0 para x > 0 e esboce o gráfico de Γ(x) para x > 0.

5. Estime a localização do ponto de mı́nimo de Γ(x) para x > 0.

6. Mostre que a definição original da função Γ(x) (1) não converge para
nenhum x ≤ 0 (mostre que a correspondente integral imprópria não
existe).

7. Apesar do resultado do item anterior, mostre que a relação funcional
Γ(x + 1) = xΓ(x) pode ser usada para se definir Γ(x) para x < 0.
Mostre, em particular, que Γ

(

−1

2

)

= −2
√
π. Esboce o gráfico de Γ(x)

para todo x ∈ R.

8. Estime o máximo local de Γ(x) para −1 < x < 0.
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2 Um sistema dissipativo simples

Nesta segunda parte do Exerćıcio de Páscoa, consideraremos o sistema me-
cânico unidimensional correspondente a um corpo puntiforme de massa m

movendo-se sob ação de um potencial V (x) e de uma força de atrito Fatr =
−bẋ. A segunda lei de Newton, neste caso, será dada por

mẍ+ bẋ+ V ′(x) = 0. (5)

Na ausência de atrito (b = 0), sabe-se que a energia total

E(t) = m
ẋ(t)2

2
+ V (x(t)) (6)

é uma constante do movimento. Devido ao atrito, porém, a energia E não se
manterá constante e irá decrescer com o tempo. Suponha um potencial V (x)
como o da Fig. 1. Este potencial possui três pontos de equiĺıbrio (V ′ = 0):
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Figura 1: Potencial V (x).

dois estáveis (V ′′ > 0): A e C; um instável (V ′′ < 0): B. Dadas certas
condições iniciais x(0) e ẋ(0) e, conseqüentemente, uma certa energia inicial
E(0), o sistema evoluirá de acordo com (5), perdendo energia continuamente
devido à força de atrito e terminará, inexoravelmente, em repouso em um
dos três pontos de equiĺıbrio. Intuitivamente, sabemos que somente para
condições iniciais cuidadosamente escolhidas o sistema terminará no ponto
instável B. Já os pontos estáveis deverão ser atingidos para um conjunto
muito maior e menos restrito de condições iniciais. Chamaremos de Bacia de
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Atração de um certo ponto de equiĺıbrio x̄ o conjunto de condições iniciais
(x0, ẋ0) no plano (x, ẋ) tal que as equações (5) quando resolvidas com as
condições iniciais x(0) = x0 e ẋ(0) = ẋ0 levam a

lim
t→∞

x(t) = x̄. (7)

O objetivo deste exerćıcio é identificar as bacias de atração no plano (x, ẋ)
dos pontos de equiĺıbrio de um dado pontencial V (x). As bacias deverão
ser identificadas por cores diferentes de acordo com os pontos de equiĺıbrio
correspondentes. Deve-se seguir o seguinte roteiro:

1. Encontre a expressão anaĺıtica de um potencial como o da Fig. 1.

2. Discretize o plano das condições iniciais (x, ẋ) em, por exemplo, 400×
400 pontos.

3. Resolva numericamente1 o problema de valor inicial da Eq. (5) para to-
dos os pontos do plano das condições iniciais (x, ẋ) e gere as respectivas
bacias de atração. Estabeleça um critério mais eficiente que (7) para
decidir quando uma solução vai terminar num certo ponto de equiĺıbrio
x̄.

Há um artigo em anexo para os que queiram se aprofundar neste assunto.
Obviamente, não faz parte do Exerćıcio se aprofundar no artigo...

1A solução numérica de EDOs é um caṕıtulo riqúıssimo da Análise Numérica. Neste
problema, porém, vocês devem usar algum pacote “profissional”. Espero que este problema
sirva de motivação para que vocês estudem MS211!
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Basin boundaries for dynamical systems can be either smooth or fractal. This paper investigates fractal basin boundaries. 

One practical consequence of such boundaries is that they can lead to great difficulty in predicting to which attractor a system 

eventually goes. The structure of fractal basin boundaries can be classified as being either locally connected or locally 

disconnected. Examples and discussion of both types of structures are given, and it appears that fractal basin boundaries 

should be common in typical dynamical systems. Lyapunov numbers and the dimension for the measure generated by inverse 

orbits are also discussed. 

1. Introduction 

Much of the interest in nonlinear dynamical 
systems has focused on the existence of periodic, 
quasiperiodic, and chaotic attractors, and the in- 
vestigation of how these arise [l]. It is also im- 
portant to recognize, however, that the analysis of 
a typical dissipative dynamical system may be 
complicated by the fact that initial conditions in 
different regions of phase space may generate orbits 
which exhibit different time-asymptotic behavior. 
That is, it is possible, and even common, that at 
fixed values of system parameters, more than one 
attractor may be present. The set of initial condi- 
tions (more precisely, the closure of this set) which 
eventually approach each particular attractor is 
called its basin of attraction. In this paper, we will 
be interested in the variety and structure of the 
boundaries which separate basins of attraction. 

In order to illustrate the concepts of coexisting 
attractors, basins of attraction and basin 
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(b) 
X 

Fig. 1. (a) Potential V(x) for a point particle moving in one 

dimension. With friction, almost every initial condition eventu- 

ally comes to rest at one of the equilibrium points, x0 or - x,,. 

(b) Phase (velocity-position) space for the system in (a). The 

basin of attraction for x0 (crosshatched) is separated from the 

basin of attraction for -x,, (blank) by a smooth basin boundary 

curve. 

boundaries, consider the simple case of a point 
particle moving under the influence of friction in a 
potential V(X) as shown in fig. la. For almost any 
initial condition, the orbit will eventually come to 
rest at either of the two stable fixed points at 
x = fx,. Fig. lb schematically depicts the phase 
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space of the system and the basins of attraction of 
these two fixed point attractors. An initial condi- 
tion chosen in the crosshatched region eventually 
comes to rest at x = x0, while any initial condition 
in the blank region tends to x = -x0. The 
boundary separating these basins is the smooth 
curve passing through the origin. Points on the 
boundary do not tend to any attractor and so must 
be mapped to other boundary points: the basin 
boundary is an invariant set under the system 
action. In the example of fig. 1, initial conditions 
on the boundary approach the unstable fixed point 
at the origin (not an attractor); i.e., the boundary 
is the stable manifold of an unstable orbit (al- 
though this will not always be the case). 

Another property of the boundary in fig. 1 is 
that it is a smooth curve. It is a main point of this 
paper that a basin boundary need not be a smooth 
curve or surface. Indeed, for a wide variety of 
systems it is common for boundaries to exhibit a 
fractal structure and to be characterized by a 
noninteger dimension. 

The importance of studying the structure of 
basin boundaries is illustrated by the following 
example. Consider the simple two-dimensional 
phase space diagram schematically depicted in fig. 
2. There are two possible final states, or attractors, 
denoted by A and B. The region to the left (right) 
of the basin boundary 2 is the basin of attraction 
for attractor A (or B, respectively). Let us consider 
an initial condition and measure its coordinates. 
Now suppose that this measurement has an un- 
certainty E in the sense that the actual initial 
condition might be anywhere in a disc of radius E 

centered at the measured value. In fig. 2, points 1 
and 2 represent two such measured initial condi- 
tions. While the orbit generated by initial condi- 
tion 1 is definitely attracted to B, initial condition 
2 is uncertain in that it may be attracted to either 
A or B. Now assume that initial conditions are 
chosen randomly with uniform distribution in the 
rectangular region shown in fig. 2. We consider the 
fraction f(~) of initial conditions which are un- 
certain as to which attractor is approached when 
there is an initial error E. For the simple case of 

fig. 2, initial conditions within a strip of width 2~ 
centered on the boundary are uncertain; thus, f(~) 
is proportional to E. In section 2, however, we 
demonstrate that systems with fractal boundaries 
are more sensitive to initial uncertainty and can 
obey 

f-Es, (1.1) 

where (Y is less than one. We call (Y the uncertainty 
exponent and we say that these systems possess 
final state sensitivity [2]. We believe that many 
typical dynamical systems exhibit this behavior. In 
cases where the uncertainty exponent ar is signifi- 
cantly less than unity, a substantial reduction in 
the error in the initial condition, E, produces only 
a relatively small decrease in the uncertainty of the 
final state as measured by f. Furthermore, we 
show that the uncertainty exponent (Y is the dif- 
ference between the dimension of the phase space 
and the “capacity dimension” of the basin 
boundary. This is explained in section 2 (cf. eq. 
(2.5) for a definition of capacity dimension). The 
increased sensitivity of final states to initial condi- 
tion error when (Y < 1 provides an important 
motivation for the study of fractal basin 
boundaries. 

Another reason for interest in fractal basin 
boundaries is that as a system parameter is varied, 
a chaotic attractor can be suddenly destroyed in a 
collision with the basin boundary (we have called 
such events crises [3]); for values of the parameter 
beyond the crisis point, long chaotic transients 
occur [4]. Variation of the parameter in the oppo- 
site direction produces the creation of a chaotic 
attractor (a “route to chaos”). 

Fig. 2. A schematic region of phase space divided by the basin 

boundary E into basins of attraction for the two attractors A 
and B. Points 1 and 2 represent two initial conditions with 

uncertainty E. 
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Several standard dissipative dynamical systems 
possess fractal basin boundaries. The work of 
Cartwright and Littlewood [5], Levinson [6], and 
Levi [7] can be shown to imply that the forced Van 
der Pol oscillator exhibits a fractal boundary due 
to the existence of a “horseshoe” in the dynamics. 
A similar analysis by Kaplan and Yorke [8] of the 
Lorenz system [9] of ordinary differential equa- 
tions can also be shown (section 4.2) to imply the 
existence of a fractal basin boundary in a parame- 
ter regime below that at which the creation of the 
strange attractor occurs. Finally, we show that the 
simple one-dimensional logistic map possesses a 
fractal boundary in the period three regime [lo] 
(or rather the third iterate of the map does). These 
examples are discussed in section 4, and it is 
shown that in these cases the basin boundary 
exhibits a fractal Cantor set structure. The basin 
structure of a simple two-dimensional mapping 
which models this behavior is shown in fig. 3a. 
Here there are two fixed point attractors (A’); 
initial conditions in the dark region are attracted 
to A +, while the blank region is the basin for A -. 
The fine-scale complexity of this type of fractal 
boundary is further revealed under magnification 
in fig. 3b. (Note that the graininess in fig. 3 is due 
to finite resolution; i.e., fig. 3b should be regarded 
as consisting of an infinite number of dark and 
blank strips.) 

The basin boundary in fig. 3 is not a continuous 
curve. In contrast, we observe in section 4 that 
fractal boundaries in two-dimensional maps can 
be continuous curves. This type of boundary is 
also “Cantor-like”: a typical smooth curve cross- 
ing the boundary intersects it in an uncountable 
set that contains no segments. See section 3 for 
further discussion and classification of different 
types of fractal basin boundaries. 

Perhaps the best-known examples [ll] of 
boundaries which are fractal curves are found in 
two-dimensional dynamics of the form t + F(z), 
where F is an analytic function of the complex 
variable t =x + iy. Fig. 4a shows the complex 
plane divided into the two basins of the analy- 
tic map given by F(t) = z * + 0.9z exp (2aiQ), with 
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A” 
-0.4 
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(a) 
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lo+ ----A 
(b) 

Fig. 3. (a) Basins of attraction for the two attractors A+ (dark 

region) and A- (blank region). This two-dimensional system is 

governed by the mapping in eqs. (4.1). (b) Magnification by a 

factor of 10s of the region in (a) given by 1.92200 I 0 I 1.92201 

and - 0.50000 I x 5 - 0.49999. 

52 = (6 + 1)/2, the golden mean. Here, orbits 
originating in the interior blank region are at- 
tracted to the fixed point at the origin, whereas the 
dark region is the set of points which escape 
to infinity (the basin for the point at infinity). 
The boundary separating these regions is quite 
complicated and has “snowflake” structure on 
arbitrarily small scale, as suggested by the magnifi- 
cation in fig. 4b. Such boundaries can be classed as 
“quasi-circles” (see sections 3 and 5 for a defini- 
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1.8 

X-c) 

(a) 

138 

10-4 

(b) 
Fig. 4. (a) Basins of attraction for the fixed point at the origin 

(blank region) and the point at infinity (dark region). The 

mapping is given by the analytic function z,+ 1 = zz + 0.92, 
exp(2niS2), where z = x + iy and 52 is the golden mean. (b) 

Magnification by a factor of lo4 of the region in (a) 0.72809 5 

x I 0.72819. 0.02209 I y s 0.02219. 

tion and discussion of quasicircles), fractal curves 
that have a moderate degree of regularity. 

Complex analytic maps are a very restricted 
class and possess special features not typical of 

two-dimensional maps in general. In particular, as 
a consequence of their Cauchy-Riemann structure 
they do not have chaotic attractors (the two 
Lyapunov numbers are equal). In section 5, there- 
fore, we shall also study more general maps of the 
plane that provide more suitable models of typical 
nonlinear physical systems (possibly of higher di- 
mension). These more general maps yield basin 
boundaries which are curves but lack the quasi- 
circle property. An example of this more general 
set of maps is shown in fig. 5a. The blank region 
consists of initial conditions which are attracted to 
a chaotic attractor (which is also shown) and again, 
the dark region is the basin of attraction for the 
point at infinity. The basin boundary has a rather 
complicated structure, as figs 5(b) and 5(c) show, 
and the numerical studies of this paper indicate 
that it is indeed a fractal set. This magnification, 
however, reveals a fractal character quite different 
from that exhibited by the boundary of the ana- 
lytic map; here, the boundary appears “stretched” 
or “striated” in contrast to the “snowflake” ap- 
pearance of fig. 4. For the class of two-dimen- 
sional maps that we study, basin boundaries can 
be either smooth or fractal. When they are fractal, 
they almost always exhibit a “stretched” structure 
similar to fig. 5. 

In section 6 we discuss the measure generated 
by inverse orbits on the basin boundary, the 
Lyapunov numbers for this measure, and the di- 
mension of the measure. Section 7 concludes the 
paper with a summary of our main results. 

2. Final state sensitivity 

Even in the absence of a detailed description of 
the dynamics of the systems shown in figs. l-5, 
one can readily understand the effect that initial 
condition error has on the ability to predict which 
final state will be approached by a particular 
trajectory. If an initial condition specified with 
error E is within that distance of the basin 
boundary, the attractor to which it will be at- 
tracted cannot be predicted with certainty. In the 
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(cl 
Fig. 5. (a) Basin structure of the mapping given in eqs. (5.15). The chaotic attractor attracts all initial conditions in the blank region 

while the dark region is the basin for orbits which escape to infinity. An unstable fixed point is located on the basin boundary at A. (b) 

Magnification of a region near B in (a). (c) Magnification to a scale of lo-’ of the region -0.5316359 I xl -0.5316356, 

- 1.1584159 my s - 1.1584156 showing locally striated structure of the boundary. 

present section we shall develop this notion of 
jkaf state sensitivity in terms of the fraction of 
phase space consisting of initial conditions which 
are uncertain (in the above sense) when specified 
with error E. We focus not on the actual size of the 

uncertain fraction of phase space, but rather on 
the way in which this fraction scales as the initial 
condition error is reduced. Furthermore, since the 
location and structure of a basin boundary de- 
pends on the system parameters, uncertainty in 
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system parameter values could affect the ability to 
predict the final state from an initial condition, 
independent of the degree of precision with which 
the initial condition is chosen. Therefore, we shall 
also investigate parameter sensitivity: the scaling 
of the uncertain fraction of parameter space with 
variation in the parameter error, when the initial 
condition is fixed. 

2.1. Initial condition uncertainty 

In the schematic example shown in fig. 2 with 
two attractors (A and B) and a simple smooth 
one-dimensional basin boundary separating the 
finite volume of phase space, the uncertain region 
for initial conditions with error E is simply de- 
termined by thickening the basin boundary by the 
amount E. Any initial condition in this strip can 
change from the basin of A to that of B (or vice 
versa) if perturbed by an amount E or less. The 
area of this region is proportional to the error E; as 
E is reduced, the “uncertain fraction” of phase 
space satisfies 

f(E) - E. (2.1) 
For f(e) to be well defined in cases where the 
phase space of the system is infinite, we shall 
restrict initial conditions to lie in some fixed finite 
subregion of phase space which contains the basin 
boundary (e.g., the region pictured in fig. 3a). In 
such a case, the actual magnitude of f(E) at a 
particular value of E will depend on the choice of 
subregion. We are primarily interested in the scal- 
ing of f (8) as E becomes small (e.g., eq. (2.1)) 
however, and we believe that this behavior is inde- 
pendent of the subregion selected. (More precisely, 
the exponent cx in eq. (1.1) is independent of the 
subregion.) 

We now consider the phase space region shown 
in fig. 3 and examine the dependence of the “ un- 
certain fraction” of phase space f(~) on the error 
E. This is accomplished by selecting 8192 random 
initial conditions over the region of fig. 3a and 
iterating each to determine its final state (i.e., to 
ascertain the basin in which each is located). Each 

Fig. 6. Log-log plot of i versus E for the phase space shown 

in fig. 3. 

initial condition (e,, x0) is then perturbed in the 
horizontal direction by &E to produce two per- 
turbed initial conditions (6’, 5 E, x0). All 16,384 
perturbed initial conditions are iterated to de- 
termine their basins, and this data is compared to 
that for the unperturbed initial conditions. If either 
of the two perturbed initial conditions associated 
with a particular unperturbed initial condition is 
in a basin different from the unperturbed one, we 
say that the initial condition is uncertain under the 
error E. We record the fraction J(E) of these initial 
conditions as the error E is varied: we expect this 
fraction of uncertain initial conditions to be pro- 
portional to the uncertain fraction f(e) of phase 
space volume. See subsection 2.3 for further dis- 
cussion of this. 

The variation of f(c) for this system with de- 
creasing error E is plotted in fig. 6. The error bars 
at each data point were computed on the basis 
that occurrences of uncertain initial conditions are 
random events, and hence the error in their num- 
ber N(E) at a particular value of E is JN(E). Here, 
the log-log plot indicates a power law behavior 
with exponent 0.2, 

f(E) = o.9E”,2. (2.2) 

The consequences of such a relationship are 
remarkable. For an error of 0.125 in the initial 
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conditions (about 3% of the width of the phase 
space shown in fig. 3a), the final states of ap- 
proximately 59% of the initial conditions could not 
be predicted with certainty. Reducing the error by 
about a factor of 60 to 0.002 results in a decrease 
of f to 268, only about a factor of two increase in 
one’s confidence in the ability to predict. 

We expect such a power law behavior, 

f&l - Ea, (2.3) 

to be common in dissipative dynamical systems. 
The uncertainty exponent (Y is related to the di- 
mension of the basin boundary, 

a=D-d. (2.4) 

Here, D is the dimension of the phase space and d 

is the dimension of the basin boundary. We use 
the capacity definition of dimension [12] 

d= lim In N(6) 
6-o In (l/6) ’ 

(2.5) 

where N(S) is the minimum number of D-dimen- 
sional cubes of side 6 required to completely cover 
the basin boundary. This definition simply ex- 
presses the scaling of N(6) with the cube size as 6 
is decreased; for example, we see that the power 
law 

N( 8) - 6-d (2.6) 

satisfies (2.5). That (2.3) and (2.4) result from (2.5) 
can be seen heuristically as follows: setting the 
cube edge 6 equal to the initial condition error E, 
the volume of the uncertain region of phase space 
will be of the order of the total volume of all N(E) 
D-dimensional cubes of side E required to cover 
the boundary. Since the volume of one of these 
cubes is Ed, this uncertain volume is of the order 
eDN(e). With (2.6) for N(E), we estimate the un- 
certain phase space volume to be of the order of 
&Div( E) - &D-d, which gives (2.3) and (2.4). A more 
precise statement is given by the following rigor- 
ous result. 

Theorem. The uncertain fraction f of a finite re- 
gion of a D-dimensional phase space associated 

with initial condition error E obeys 

lim lnf(&) 
,_OIn==(Y, (2.7) 

if and only if the basin boundary has capacity 
dimension d = D - a. 

A proof of this theorem is provided at the end 
of this section. 

‘The expression (2.3) reduces to the linear rela- 
tion (2.1) in cases where the basin boundary is a 
smooth curve or surface so that its dimension is 
one less than that of the phase space, d = D - 1. 

In general, since the basin boundary divides 
the phase space, its dimension d must satisfy 
d 2 D - 1. Thus, the existence of fractional dimen- 
sion boundaries allows for values 0 -C (Y I 1. From 
(2.4), one concludes that the result (2.2) for the 
mapping in fig. 3 indicates an experimentally mea- 
sured fractal basin boundary dimension of ap- 
proximately 1.8. For the analytic mapping shown 
in fig. 4 and discussed in section 5.1, the experi- 
mental measurement of j(e) as described above 
again yields the relationship (2.3) with a value of 
(Y = 0.69; by (2.4), this indicates a basin boundary 
dimension of about 1.3. The more general quadratic 
map in fig. 5 produces a similar value (Y = 0.7 for a 
similar dimension of about 1.3, despite the quite 
different appearance of the basin boundary. 

2.2. Parameter sensitivity 

In addition to ‘affecting the specification of an 
initial condition, error may also be present in the 
selection of the parameters of a system. A small 
error in a system parameter might alter the loca- 
tion or structure of a basin boundary so that a 
fixed initial condition shifts from one basin to 
another. In a finite region of parameter space, the 
fraction of parameter values which will produce 
such a shift for a given initial condition when 
perturbed by a parameter error 6 is the uncertain 
fraction f,(S) of parameter space. Here we in- 
vestigate the scaling of f,(S) at small 6 for the 
map shown in fig, 3. As discussed in section 4.1, 
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6 

Fig. 7. Log-log plot of fJ versus parameter error 6 for the 

phase space of fig. 3 (eqs. (4.1)). 

the parameter we shall vary in this system is 
denoted J, (cf. eqs. (4.1)). 

We consider the sensitivity of the basin boundary 
to variations of the system parameter Jo. We select 
a single initial condition (f3,,, x0) = (1.05,0.3) with 
a random choice of J, in the interval 0.1 I J, I 0.3 
and determine which attractor (A’) is approached 
by this orbit. Then J,, is perturbed to J, &- 6 and 
the same initial condition is iterated for both 
perturbed maps. If either of the parameter per- 
turbations has shifted the basin boundary so that 
the fixed initial condition has changed from the 
original basin to the other, we say that this par- 
ticular unperturbed choice of J, is uncertain under 
the error 6. This experiment is repeated for 12,800 
random choices of J,, in the same interval (all with 
the same single initial condition) for values of the 
parameter error S between lop3 2 6 2 lo-‘*. The 
fraction f-(S) of the uncertain parameter values 
(in the sense given above) in the parameter interval 
is plotted as a function of the parameter error 6 in 
fig. 7. 

The result of fig. 7 again indicates a power law 
relationship between the uncertain fraction of 
parameter space and the parameter error, fJ(S) - 
6’.*. (While it is possible that the dimension of a 
basin boundary could vary widely over a parame- 
ter range, the dimension of the boundary in this 

system remains close to 1.8 in the parameter inter- 
val examined.) 

2.3. Remarks 

1) While the power law behavior (2.2) of f(~) 
observed for the map in fig. 3 satisfies the limiting 
relationship (2.7), there are other forms of f(~) at 
small E that would also yield the same value of (Y. 
For example, the behavior f(e) - &a In E also 
satisfies (2.7). Indeed, an example given in the 
appendix shows that one can have a smooth basin 
boundary (CX = 1) with f(e) - eln(l/~) for small e. 

2) Imagine that we attempt to initialize the 
system at a point n in the region of interest (e.g., 
the rectangle of fig. 3a). If n has an uncertainty e, 
then the actual initial condition is j = TJ + eA, 
where eA is a random number representing the 
error. The quantity A might be thought of as being 
generated from some probability density p(A). 

For example, without loss of generality p can be 
chosen so that jA2p(A)dDA = 1, in which case E is 
the variance of the error eA. Now choose n ran- 

domly in the region of interest and use n to 
determine the attractor to which the system tends. 
Since the actual initial condition is 17 rather than 
n, the prediction of the final state might in fact be 
incorrect. Let f(e) denote the probability of this 
error. Note that f(e) and f(e) are different: j(e) 
is the probability of making an incorrect predic- 
tion, while f(e) is the probability of being able to 
make an incorrect prediction if ]A] -C 1. The quan- 
tity J(E) is measurable by performing repeated 
experiments. For example, our calculated quantity 
f(e) for the numerical experiments of fig. 3a is an 
approximation to 2f( e) for the case A = (A,., A,,), 
p(A) = S(A,)[S(A, - 1) + &A, + 1)]/2, where 
here 6( A,) is the standard delta-function. The 
quantity f(e) is, however, in principle much harder 
to approximate in a numerical experiment. 

Pelikan [13] has proven that f(e) - f(e) under 
the following restrictions: (i) p = constant in (A( < 
1 and zero otherwise; and (ii) the map is strictly 
expanding on the basin boundary. The restriction 
(ii), for example, applies to certain one-dimen- 
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sional maps and to Julia sets (e.g., fig. 4) but not 
to our example in fig. 3. In the general case, we 
believe that the following statement should hold. 

Conjecture. For typical dynamical systems 

. ln.04 1 
-= 

!?I lnf(e) ’ 

2.4. Proof of theorem (2.7) 

Let B(E, A) be the set of points within E of a 
closed bounded set A and assume A has capacity 
dimension d. Cover phase space with a cubic grid 
with cube edge length E. Each point x of A is in a 
box of the grid. Any point y within E of A lies 
within E of some point x in A. Therefore y lies in 
one of 3’ boxes which are the original cube or a 
cube touching the original cube (see fig. 8). Hence, 
B( E, A) can be covered using no more than 3DN( E) 
cubes where N(E) is the number of E cubes needed 
to cover A. Thus the volume of the set B(E, A) 
satisfies 

Vol (B( E, A)) I 3%v( E). (2.8) 

Now we cover A using cubes from a grid with 
edge lengths E/D’/*. We choose that size grid 
since any two points within such a cube are within 
E of each other. Thus every point in every cube 
used in the cover is within E of A, and so lies in 
B(E, A). Such a cover has iV(e/D’/*) cubes, so 

voi(B(~, A)) 2 (E/D~/*)%(E/D~/*). (2.9) 

4 
Fig. 8. Schematic representation of a basin boundary set A in 
a phase space covered with cubes of edge e. 

Thus, 

In DwD/* 

1nE 
+ In N( E/@‘*) + D 

In E 

< ln [Vol (NE? 01 
In E 

ln3D -~ 
’ 1nE 

+ In N(E) + D 
lne * 

From the definition of d, eq. (2.5), 

lim 1001 (NE, 41 
In E 

-D-d. 
Ed0 

Let A be the portion of the basin boundary in the 
region of interest (as in the rectangle of fig. 3a). 
Since f(e) is proportional to Vol( B( E, A)), eq. 
(2.7) follows. 

3. Classification of fractal basin boundaries 

3.1. ClassiJication 

In figs. 3, 4, and 5 of section 1 we have given 
several examples of fractal basin boundaries. The 
boundaries in these figures appear to have quite 
different structure, and indeed the types of basin 
boundaries which they exemplify are fundamen- 
tally different. In this section we offer a classifica- 
tion of fractal basin boundaries, ordered below in 
terms of increasing degree of regularity of the 
boundary: 

(i) boundaries which are loca& disconnected 

(e.g., fig. 3); 
(ii) boundaries which are locally connected but 

are not quasicircles (e.g., fig. 5); 
(iii) boundaries which are quasicircles (e.g., 

fig. 4). 

3.2. DeJnitions 

A closed set is disconnected if it can be split into 
two parts A and B such that 

minlcll- fil> 0 

for a in A and /3 in B. If this cannot be done then 
the set is connected. 

A set is locally connected if, given any point 7 in 
the set and any sufficiently small E, then there 
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exists a 6( E, q) I E with the following property: can be determined analytically and is given by 

P) For every point 5 in the set satisfying ]n - <] 

I S(E, n), there is a connected subset of the origi- 

nal set containing 17 and 5 and lying wholly in the 

a-ball centered at 7. 

y = B(x) = - 5 hJ~cos(2aX~-‘x), (3.1) 
j=l 

If the property P is not satisfied for every 17 in 

the set, then we say that the boundary is locally 

disconnected. 

If the property P can be satisfied with 6 = KE for 

some constant K independent of n, then the set is 

a quasicircle. 

From our definition, it follows that the boundary 

is locally connected if it is a continuous curve or 

surface. A continuous surface lying in a D- 

dimensional phase space is a surface which is 

parametrically representable as x = g(s), where s 

is a D-l-dimensional parameter vector, x is a 

point on the boundary, and g is a continuous 

D-dimensional vector function of s. 

whereA,isaninteger,X,>A,>land -l<x< 

1. This basin boundary is shown in fig. 19. The 

sum (3.1) converges absolutely and uniformly for 

X, > 1 so that B(x) is a continuous curve; there- 

fore, the basin boundary is locally connected. As 

such, (3.1) can be formally differentiated term by 

term, 

g = F E [ >)‘sin(27rhip1x). (3.2) 
X ,=1 Y 

Since X, > X, > 1, we see that (3.2) diverges. Thus, 

the boundary y = B(x) is a continuous but 

nowhere differentiable curve. Furthermore, the 

boundary has infinite length and can be shown 

[14] to have capacity dimension d=2- 

(lnX,/lnX,). 

If the basin boundary is locally connected and 

bounded, then one can show that S(E, 7) can be 

chosen independent of 7, 6( E, 7) = a(~). 

3.3. Examples 

In order to give the reader a feel for these 

definitions we list below several illustrative exam- 

ples applying these definitions. 

Example 1. A simple smooth curve such as the 

basin boundary pictured in fig. 1 is connected (but 

not fractal). 

Example 2. The logistic map, x,+r = rx,(l - xn), 

has two attractors for 0 < r < 4. One of these 

attractors is x = - cc. The other is located in the 

region 1 > x > 0 and may be either periodic or 

chaotic depending on r. The basin boundary for 

these two attractors are the two points x = 0 and 

x = 1. To apply the definition, identify n in the 

definition with one of these two points, say x = 0, 

and take E < 1. Then .$ = 17 = 0, and property P is 

clearly satisfied. The boundary is locally con- 

nected. 

Example 3. In section 5 we shall consider a map- 

ping of a cylinder for which the basin boundary 

We now show heuristically that this basin 

boundary is not a quasicircle. Let us focus on the 

behavior of (3.1) near x = 0, where B(x) is sche- 

matically depicted in fig. 9. As prescribed in the 

definition of local connectedness, we select the 

point q = (x*, B(x,)) on the boundary to be 

the center of an e-ball. In order to apply the 

property P, we ask the following question: if we 

construct a ball of radius 6 around v (as shown in 

fig. 9) which includes the boundary point .$* = 

(-x*7 B( - x.)), how large must E be so that a 

connected piece of the boundary containing n and 

5, lies within the e-ball centered at q? We shall 

show that as x* becomes smaller, the required 

radius E diminishes as 8(~) - ~7, with y > 1. 

From (3.1) we note that B(x,) = B( - x,), so 

that the distance between .$* and 17 is simply the 

horizontal displacement 6 = 2x,. Referring to fig. 

9, we see that for n and E* to lie on a connected 

piece of the boundary contained entirely within an 

E-ball centered at 9, we must choose E large enough 

to include the boundary point m = (0, B(0)). 

Therefore, E(x*) 2 Irn - iI= IB(x*) - B(O)\, for E 

B x * (since 6 - Ed, y > 1, and x* is small). Now 

we note that (3.1) implies B(x/X,) = A;‘[B(x) - 

cos(2ax/XX)], so that B(0) = X;‘[B(O) - 11. Com- 
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Y I 

E,=(-X,,B(-X,)) J ----6(x,)---- q=(X,,B(X,)) 

t 

x- 

Fig. 9. Schematic representation of the basin boundary B(x) 

of fig. 19 near x = 0. Choosing the point 9 on the boundary, 

the radius of an e-ball around 7 must be e = Jm - 71 so as to 

include a connected piece of B(x) connecting 7 to the point 5, 

a distance 6 away. 

bining these two relations, we see that &(x*/h,) is 

&(X*/U = IB(x*/U -B(O)1 

= x,‘le(x*) -B(O) + 1 

-cos(27rx*/X,)) 

= h;‘lB(x*) -B(O)1 

= G*)/hy, 

where we have neglected the contribution 1 - 
cos(2mx,/h,) for small x*. Thus we see that as 
x* is diminished by a factor of A,, the required 
radius of the e-ball decreases by a factor of A,. 
Thus, E( x *) - x:/Y, with y=(lnA,/lnX,)> 1. 
Combining this with S(x *) - x*, we have 

S(E) <0(&Y). 

While we have derived this result by considering 
a region in the vicinity of x = 0, we emphasize that 
the same behavior must occur near every x = m/A”, 

for all positive integers m and n. Thus, since 
y > 1, to satisfy property P, 6(e) must shrink to 
zero faster than linearly with E as E --) 0; we can- 
not satisfy property P with a(&) = KE. We conclude 
that (3.1) is an example of a fractal basin boundary 
that is connected but is not a quasicircle. Due to 
the similar appearance upon magnification of the 
basin boundary of fig. 5 and that in fig. 19, we 
believe that the boundary in fig. 5 is also con- 

netted but not a 
further discussion). 
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quasicircle (cf. section 5 for 

Example 4. By definition the largest connected 
subset of a Cantor set is a single point; yet in any 
neighborhood of a point in a Cantor set there are 
an infinite number of other points in the Cantor 
set. Thus a Cantor set is locally disconnected. In 
the next section we discuss a one-dimensional map 
model of the Lorenz system of differential equa- 
tions; for this map the basin boundary is a Cantor 
set. In addition, the magnification of the basin 
boundary shown in fig. 3b is essentially a Cantor 
set of parallel line segments (see section 4), and 
thus also is an example of a disconnected basin 
boundary. 

3.4. Discussion 

In the following section we discuss several dy- 
namical systems with locally disconnected fractal 
basin boundaries. Following that, section 5 is de- 
voted to a discussion of locally connected basin 
boundaries. Locally connected basin boundaries 
arising from an analytic map of a single complex 
variable, z + F(z), where t = x + iy and F is 
analytic, have been studied for a long time. Such 
maps yield quasicircle basin boundaries [ll]. How- 
ever, such maps are also special, and we believe 
that the quasicircle property should not be ex- 
pected to occur in typical dynamical systems. To 
our knowledge, our discussion of section 5 is the 
first (with the exception of our preliminary note, 
ref. 4) to address locally connected fractal basin 
boundaries that are not quasicircles. 

From the examples of section 5 it appears that 
locally connected fractal basin boundaries require 
a minimum system dimensionality for their ex- 
istence. In particular, for smooth invertible maps, 
the dimension must be at least three, correspond- 
ing to four for continuous time systems (flows). 
For smooth noninvertible maps the dimensionality 
is evidently required to be at least two. In contrast, 
like chaotic attractors, locally disconnected fractal 
basin boundaries can occur in smooth one-dimen- 



136 S. W. McDonald et al./ Fractal basin hounduries 

sional noninvertible maps and in smooth two- 
dimensional invertible maps, 

4. Locally disconnected basin boundaries 

The development of the present understanding 
of chaotic motion in dynamical systems has relied 
on the investigation of several standard physical 
models. In particular, the behavior of the forced 
van der Pol oscillator in certain parameter regimes 
was studied by Cartwright and Littlewood [5] who 
suggested the presence of chaotic (although nonat- 
tracting) orbits as well as an infinity of periodic 
orbits (also nonattracting). The ensuing work of 
Levinson [6] on a class of chaotic orbits in this 
system led to the geometric interpretation of Smale 
[15] and his introduction of the horseshoe map. 
This general construction has since influenced the 
analysis of chaotic behavior in many systems, and 
its specific application to the van der Pol oscillator 
is described in the work of Levi [7]. Levi points 
out, in passing, that the van der Pol system pos- 
sesses a basin boundary that is a Cantor set and 
Flaherty and Hoppensteadt [16] comment briefly 
that Levinson’s solutions are orbits on this 
boundary. However, there is virtually no literature 
on fractal basin boundaries, and the important 
practical implications of this type of boundary 
structure, which we discuss in this paper, have not 
been studied. 

The basin boundary for the case studied in refs. 
5-7 and 16 is an example of a locally disconnected 
fractal basin boundary. In this section we shall 
give a detailed discussion of several other exam- 
ples of locally disconnected fractal basin 
boundaries. The general impression emerging from 
the discussion of this section is that such 
boundaries may be commonly encountered in 
practical situations. We begin in section 4.1 with 
an examination of the basin boundary (shown in 
fig. 3) which arises in a model similar to (but 
simpler than) that used by Levi to describe the 
qualitative behavior of the van der Pol oscillator. 
While the van der Pol equation has two attracting 
orbits of periods n and n + 2 for some n, our 
model has two attracting fixed points. 

4.1. A model annulus map 

Consider a map on the annulus & in the plane 
as shown in fig. 10. We use polar coordinates (r, 6) 
with 8 measured from the horizontal axis as shown. 
Phase points in J@ at time t = 0 are mapped into 
the thinner convoluted annulus &’ at t = 1. Thus 
we are considering a discrete time map (which 
might arise via Poincare surface of section [l] from 
a continuous time system). The effect of this map 
M on the region between 8 = 0 and 8 = ?r is to 
squeeze the annulus radially, stretch it in length, 
and to fold the region near 8 = -+?r/2 as shown. 
The points A* at 8 = 0, v are attracting fixed 
points of the map. The map M is taken to be 
symmetric under reflection across the horizontal 
axis (0 --) 2n - 8). An explicit map with these 
properties will be given later. 

The angular aspect of the two-dimensional map 
M may be simulated by the one-dimensional map 
M,(e) which is shown in fig. 11. In addition to the 
stable fixed points A* at t9 = 0, r, there are three 
unstable fixed points: S, at 8 = 8+, S_ at 0 = 8_, 
and S, at 8 = m/2. In the full two-dimensional 
geometry of the annulus, these points are located 
at the crosses in fig. 10; they are within the image 
annulus &’ and continue to be within all succes- 
sive images of the original annulus &. Thus, S + 

Fig. 10. The mapping M maps the annulus I to the thinner 
convoluted annulus _QP such that there are two attracting fixed 
points A* and saddle points S,, S_, and E$,. 
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0 8+ n/2 

8 

Fig. 11. The angular behavior MI (8) of the annulus map M of 

fig. 10. 

0 c 

s_ c’ 
c- 

d’ 

b d 

Fig. 12. Schematic illustration of the convolution of dad’ near 
e = r/2. 

and S, are actually saddles due to the radial 
contraction under M. 

The action of M in the convoluted region near 
0 = a/2 is schematically illustrated in fig. 12, where 
the arc has been straightened out. Here, the sad- 
dles S * and S,, are shown with their local contract- 
ing and stretching directions. The extension & of 
the contracting direction of S, is the part of the 
stable manifold of S, which maps to 91b’ under 
one iteration of M, similarly, a is the piece of the 
stable manifold of S_ which maps to 8i’. Compar- 
ing fig. 12 with fig. 10 and in view of the properties 
of the stable manifolds of S, and S_, all points in 
the region to the left of a will map toward the 
attractor A+; all points to the right of a will tend -- 
to A-. Thus, the region to the left (right) of ab(cd) 
is a part of the basin of attraction for A+(A-). We 
shall see, however, that the region between & and 
a contains more pieces of each of these basins in 
an extremely intermingled order. 

b d 

Fig. 13. Further simplification of the region in fig. 12, identify- 
ing the action of M on particular subregions of the rectangle 

abdc: M(V,)=H, fori=l,2,3,and M($*)=C,. 

The region of the annulus near 19 = s/2 in fig. 
12 is further schematized in fig. 13, where & and Z 

have been straightened. Again, the action of the 
map M on the rectangle abdc is to squeeze the 
region vertically, stretch it out horizontally (to 
more than triple its original length), and then form 
the “s” shape with a + m and cd --, z. Thus, 
the crosshatched region V, at the left end of abdc 
is mapped to the lowest horizontal strip H, (also 
crosshatched). Similarly, V, maps to H, and V, to 
H,. The region to the left of z is a piece of the 
basin of attraction of the attractor A+; the region 
to the right of & is a piece of the basin for A-. 

The vertical strip Bi between V, and V, is the 
preimage of the arc C_ which connects H, and 
H,; B,+ maps to the arc C,. Since the arc C+(C_) 
is to the left of & (right of a), its future iterates 
tend to the attractor A+(A-). Therefore, we see 
that the vertical strip B:(B;) is a piece of the 
basin of attraction of A+(A-). The basins of the 
two attractors are now seen to be “tangled”, with 
the regions B,+ and B; in “inverted” order (i.e., 
B,+ is closer to A- than is B;). The future of the 
three remaining strips (V,, V,, and V,) is as yet 
undetermined; we define the union of these strips 
to be the set & = V,UV,UV,. 

We now consider the future of the horizontal 
strip H, = M(V,). The segment HIfIB; = H; will 
eventually tend to the attractor A- since it is in 
the basin of attraction for A-. Similarly, the seg- 
ment H,flBG = H[ will tend to A+. As H, is the 
image of V, with Zb + ?I?, one may now subdi- 
vide V, into thinner vertical strips: these are the 
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preimages of H: and the remaining three sections 
of H,, Hu = H,nV, (i = 1,2,3). This is shown in 
fig. 14, where the strip Vi is partitioned into five 
thinner strips. The strips Vii map to H,,; these are 
separated by the strips Bi+ which map to HF. 

Since H: eventually maps to A+, its preimage 
B[ must be a piece of the basin of attraction for 
A+. Similarly, B; is a piece of the basin of attrac- 
tion for A-. The other two vertical strips, Vi and 
V,, may be similarly partitioned and so contain 
pieces B,* (i = 2,3) of the basin of A*. The alter- 
nating order of these pieces indicates an even 
higher degree of tangling than previously noted. 
At this stage there are nine vertical strips V,,(i, j 
= 1, 2, 3) with undetermined futures. The union of 
these strips with two indices is defined as the set 
p2 = ui, &. 

Indeed, this structure continues when one con- 
siders the future M(Vij) of Vij. For illustration, 
consider M(V,,) = Hi,. Since Hi$ z H,,flBF will 
eventually map to A’, the vertical strip Vi, is 
further divided into the 5 substrips B,‘, and Vin 
such that HA = M(B:,) and H1ii = M(V,,,)(i = 1, 
2, 3). We see that at the nth stage of this process a 
vertical strip ylj, ,_, j,<ji = 1, 2, 3) can be further 
identified to contain substrips Bjs2, ,, jn, which are 
pieces of the basins of A*, separated by a new 
series of substrips Vj, j, ,, jn+l. At each step n we 

define the union of the 3” vertical strips with 
undetermined future Vj, j2 _, j to be the set 

PnG U vi, j2,..j’ n 1 . n 

J,.iZ....i” 

This process of division is similar to that found in 
the standard horseshoe construction [17] and pro- 
duces a Cantor set. As n + co, the basin boundary 
/3 is given by 

p= lim np,. 
n-+m n 

Thus the part of the basin boundary lying in the 
rectangle abed of fig. 13 is the product of a Cantor 
set (running horizontally) and an interval (running 
vertically). Hence the boundary is locally discon- 
nected (cf., example 4 of section 3.3). 

h3 -HI 

Fig 14. Simplifying fig. 13, the top picture shows only the 

vertical strips and the lowest horizontal strip H, = M(V,). The 
bottom picture shows the partitioning of V, into the five 

substrips which are preimages of the five pieces of H,: M(V,,) 

= H,, for i = 1, 2, 3 and M(B:) = H:. Also identified are the 

pieces involved in the next level of the construction: the 

intersections of the substrips of V, with H,,. 

We now give a specific example of a map which 
has the essential geometric properties outlined 
above, 

8 “+,=0,+asin28,-bsin48,-x,sin8,, (4.la) 

X n+1= --Jocose,, (4.lb) 

where x may be thought of as the radial distance 
from the center of the annulus. The angles 0 and 
0 + 27r are identified as equivalent and the desired 
reflection symmetry for 8 + 2n - 8 is present. At 
fixed x,, the graph of 0,+ 1 versus 8, is similar to 
that in fig. 11 and is adjustable with the two 
parameters a and b. The x-dependent part of 
(4.la) and the form of (4.lb) were chosen in a 
simple way so that the map is everywhere contract- 
ing for J, < 1 (the Jacobian determinant is 
J, sin2 e ). 

Like fig. 10, this map has two fixed points 
A+= (e,, x,) = (0, -Jo) and A-= (K, x_) = 

(T, J,,) which are attracting for values of a, b, and 
J, such that 11 + 2a - 46 +.I,1 c 1. The parame- 
ters must also be adjusted for these two fixed 
points to be the only attractors present. Our choice 
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of a = 1.32, b = 0.9, and J, = 0.3 seems to satisfy 
these requirements. 

We have examined the basin structure of (4.1) 
with the stated choice of parameters by consider- 
ing a grid of 256 x 256 initial conditions over the 
region 0 I 8 I B and -0.5 I x I 0.5. Each initial 
condition was iterated 100 times, which is long 
enough to ensure that all these orbits come within 
a distance of 10e3 from one of the two attractors. 
The basins for A+ and A- are shown in fig. 3, 
which was constructed by placing a dot at the 
location of each initial condition whose trajectory 
approached A+ at (0, -0.3). The solid vertical 
dark region to the left of 8 = 0.3 corresponds to 
the region to the left of & in fig. 13; the blank 
region between 2.8 I t9 5 r corresponds to the re- 
gion to the right of a. This correspondence with 
figs. 13 and 14 can be continued: the blank para- 
bolic strip at 0.8 I 0 I 1.4 is B; , the inverted dark 
parabolic region at 1.8 I 8 I 2.4 is B,+, the blank 
strip at B = 0.5 is B; and the somewhat thinner 
dark strip a 8 = 0.7 is B:, etc. The slight tilt of the 
strips and the parabolic shapes are due to the 
x-dependence of the map which was, -for the most 
part, ignored in the schematic figs. 12 and 13. 

The richness of this basin structure is further 
revealed upon magnification of the small region 
1.92200 I 8 I 1.92201, - 0.50000 I x s - 0.49999 

(a scale of 10w5) as shown in fig. 3b. The basins 
are evidently intertwined to an extreme degree and 
the fractal Cantor set nature of the basin boundary 
is indicated. 

4.2. Other examples of local& disconnected 

boundaries 

The preceding discussion of the existence of 
basin boundaries which are locally disconnected 
was illustrated by a two-dimensional mapping (4.1) 
selected to exhibit the properties of an annulus 
map developed in figs. 10-14. There are, however, 
more familiar systems which possess this type of 
basin boundary structure. There has also been 
recent experimental evidence implying the ex- 
istence of fractal basin boundaries in an actual 

physical system. Here we briefly describe three 
additional examples in which fractal basin 
boundaries occur. 

1) The one-dimensional logistic map 

The basin structure of a one-dimensional map 
with N coexisting attractors sometimes consists of 
N collections of one-dimensional line segments 
(basins) separated by a basin boundary composed 
of a finite set of points. In other examples, the 
basin boundary is fractal, a Cantor set of frac- 
tional dimension. The uncertainty exponent CY ob- 
served in the power law behavior (1.1) described in 
section 2 could be used to determine the dimen- 
sion (2.4) of the basin boundary. An example of a 
fractal basin boundary is provided by the logistic 
map, here written in the form 

X n+l =F,(x,)=A-X,2, 1x112. (4.2) 

In the parameter range 1.75 ,< h 5 1.79, the at- 
tractor is a periodic orbit with period three (cf. 
refs. 10, 18, and 19 for results concerning this 
regime). In order to construct a one-dimensional 
map with more than one attractor, we consider the 
third iterate FJ3) of (4.2): each element of the 
period three attractor is a fixed point attractor of 
F13) with its own basin of attraction. In terms of 
the original map, each basin is the set of initial 
conditions which eventually progress around the 
period three orbit in the same phase. Thus, when 
considering the original map Fh we speak of “final 
phase sensitivity”, while for Fj3) we refer to final 
state sensitivity as before. 

The final state sensitivity experiment was per- 
formed as described in section 2 for the third 
iterate map F,j3) with X = 1.75. The fraction f(e) 
of 12,800 initial conditions which changed from 
one basin to another when perturbed by an error E_ 
is expected to be proportional to the uncertain 
volume (length) of phase space; the behavior of 
f(e) as E is reduced is shown in fig. 15. Again, a 
power law behavior f‘(~) - e”.03 is evident, with an 
uncertainty exponent which implies a basin 
boundary dimension (2.4) of approximately 0.97. 
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downward (i < 0) intersections of a trajectory in 
the three-dimensional space with this plane. 

In the parameter range 1 < r c r*, the origin 
(O,O,O) is an unstable fixed point possessing a 
two-dimensional stable manifold S, and a one- 
dimensional unstable manifold U,. The curve L in 

0.1- 
IO* 10-4 10-6 10-a IO-10 Id2 

E 

Fig. 15. Log-log plot of j versus e for the third iterate of the 
logistic map in the period three regime. 

2) L.orenz system 

The Lorenz system [9] of three ordinary dif- 
ferential equations (a truncated model of fluid 
convection) progresses through several regimes of 
motion as a parameter r is increased. For values 
of r in the range 0 -C r < 1, there is a single fixed 
point attractor at the origin of the three-dimen- 
sional phase space representing a stationary fluid 
without flow. As r is increased through unity, this 
fixed point becomes unstable and two separate 
fixed point attractors appear (representing left- 
and right-handed convective rolls); these are stable 
in the regime 1 < r -C rC. A strange attractor ap- 
pears at a parameter value r* slightly less than r,; 

in this parameter range r* < r < r,, the two fixed 
point attractors coexist with the strange attractor. 
Increasing r through the critical value rc brings 
the instability of the two fixed points, and for 
r > rc the only attractor is the strange attractor. 
We concentrate on the parameter range r < r* in 
which there are only the two coexisting fixed point 
attractors. 

We consider the three-dimensional phase space 
in rectangular coordinates. The two fixed point 
attractors A and B he in a plane P defined by 
z = r - 1 (in Lorenz’s notation) as shown in fig. 
16a. We follow Kaplan and Yorke [8] and consider 
the mapping $J on P induced by the repeated 

Y 

“+\+ 

P:Z=r-I 

(a) 

‘B 

(b) 
Fig. 16. (a) The flow of the Lorenz system in a three-dimen- 
sional phase space induces the mapping + on the plane P 
(defined as constant z). This qualitative illustration of $I shows 
how points in a region R on P near the stable manifold L map 
across L and converge near the unstable manifold V_. (b) 
More complete illustration of the action of 9 on regions R, 
near L (on both sides). 
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fig. 16a represents the first intersection of the 
stable manifold SO with P. The points V, are the 
first downward intersections of U,, with P, follow- 
ing U, in both directions from the origin. Thus, 4 
is not defined on L, and Cp is discontinuous at L. 

Numerical investigation of the orbits for r 
slightly less than r* reveal the nature of $, as 
illustrated in fig. 16a by R j+(R). In general, 
points far from L on either side uniformly ap- 
proach the attractor (A or B) on the same side 
(cd + c’d’). A region near L, however, will map to 
the other side of L when r is sufficiently close to 
r * (abdc --) a’b’d’c’). This characteristic of the map 
is due to a corresponding feature of the flow in 
this regime: orbits starting near L on P are drawn 
down toward the origin and then are pushed out 
and travel near the unstable manifold U,, crossing 
over [8] the curve L on the next downward return 
to the plane P, intersecting P near V, or V_. The 
schematic triangular shape of the region cp(R) re- 
sults from the fact that the closer points in R are 
to the curve L, the more they tend to be mapped 
to the same point in e(R) (ab --, a’b’). The area of 
+(R) is also much smaller than that of R due to 
the strong contraction experienced by the flow for 
the standard parameters of the Lorenz system. 

The flow admits inversion symmetry in the plane 
P so that, following Kaplan and Yorke [8], we 
show in fig. 16b a more complete (yet qualitative) 
picture of the mapping 9 near L. Here, the 
boundaries of the regions Ri (i = 1,. . . ,4) which 
coincide with L map to the pointed tips of the thin 
triangles shown in fig. 16b. This picture of +, 
called a “broken horseshoe” in ref. 8, can be used 
to show that the boundary separating the basins of 
attraction of A and B is a Cantor set. 

As in the previous development in section 4.1, 
figs. 12-14, of a Cantor set boundary, we redraw 
fig. 16b as a “reduced broken horseshoe” in fig. 
17. That is, we imagine trimming the area of the 
upper portion of R, until the upper boundary of 
+(R,) coincides with the upper boundary of R,. 
Similarly, we trim R,,,,, until we obtain fig. 17a. 
Comparison of this picture with that of fig. 16b 
reveals that the crosshatched regions of +(R,) and 

(a) 

(b) 
Fig. 17. (a) Reduced broken horseshoe of the map q% The 
cross-hatched portions of @(RI) and +(R,) will eventually 
map to attractor B (if R, was extended further from L, the - 
image of that portion of R, would map to between plpz and 
attractor B (cf. +(R2)). (b) Simplified illustration of the regions 
R,, showing only the subregions which map to the cross-hatched 
regions of +(R,) in (a). For example, Ry maps to the pointed 
tip of @(RI) and thence toward B; Ry is a piece of the basin 
of B. 

+(RJ shown in fig. 17a will map to some region 
between the segment pip2 of R, and the attractor 
B. Thus, under successive applications of 6, these 
two crosshatched regions will approach B; the 
same argument implies that the crosshatched pieces 
of +(R2) and $(R,) (c.f. fig. 17a) will eventually 
converge to A. This allows us to identify the 
subregions Ry and Rt of R, and R, which are in 
the basin of B and the subregions R”; and R$ of 
R, and R, which are in the basin of A. These 
regions are shown as the hatched and shaded 
strips in the even more schematic fig. 17b. The 
basin structure in the blank strips of R, through 
R, is as yet undetermined. 

Fig. 18a shows just the two regions R, and R,, 
separated by the curve L. The hatched strip RF in 
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MI) 

rl-O++ll 

(a) 

(b) 

Fig. 18. (a) Illustration of the intersections of R, and R, with 

+(R,) and +(R4) (vertical strips, cf. fig. 17a)). (b) Further 

division of the horizontal blank portions of R, and R, of (a). 

The blank region u, maps to the blank portion of +(Ri)flRi, 

Ry, -+ RT (and thence toward B), RTt -* R? (and thence to- 

ward A) and u2 maps to the blank portion of +(R,)flR,. Thus 

Rv,(Rfr) is in the basin of B(A) and u, and u2 are yet 

undetermined. Similar arguments apply for the subdivision 

of R,. 

R, has been determined to be a piece of the basin 
of B, and R$ in R, is a piece of the basin for A. 
Now the vertical strips representing the intersec- 
tion of +(R,) and $(R4) with R, and R, are also 
shown. From the definition of Ry, we see that 
points lying in the intersections $(R,)flR’: and 
$(R,)flRy will eventually approach B, while the 
region +(Rr)nRt and +(R,)nR; will approach 
A. Thus, by considering +-‘(@(RI)) we can fur- 
ther deduce that the blank strip of R, must at least 

have the basin structure as shown in fig. Mb. The 
strip RT, maps into Rt and so is a piece of the 
basin of attraction for B; similarly, R$ is a piece 
of the basin for A. Analysis of the implications of 
fig. 18a for the region R, (due to the intersection 
of +(R,) with RT and R:) results in a similar 
partitioning of R,. Indeed, all four original re- 
gions can be analyzed in this manner and can be 
shown to have the alternating basin structure il- 
lustrated in fig. 18b. Furthermore, consideration of 
the intersections +(R,)flRy, and +(R,)flRfr leads 
to a similar partitioning of the blank strip ui; the 
blank strip u2 is partitioned by considering $(R,) 
flR”,, and +(R,)nRt,. As in the development of 
section 4.1, this continued process results in a 
standard horseshoe construction; that is, the re- 
maining undetermined “blank strips” at each stage 
produce a basin boundary which, in the limit, 
forms a Cantor set. Almost every point of R, and 
R, will eventually approach either A or B, the 
exceptions being the points on the Cantor set of 
lines that are mapped into R,UR, by all iterates 
of the map. An indirect effect of the existence of 
this Cantor set boundary in the parameter regime 
r slightly less than r* is provided by the observa- 
tion of long chaotic transients in numerical investi- 
gations, specifically those of Yorke and Yorke [20]. 

3) The experiments of Berg; and Dubois [21] 

These authors have performed experiments on 
the Benard instability in a low aspect ratio rectan- 
gular cell for high Rayleigh number and high 
Prandtl number. They observe that the system can 
have multiple attractors, and that a rather long 
chaotic transient exists before the system settles 
into one of the attractors. Since the system evolu- 
tion during the transient phase depends strongly 
on initial conditions, it is to be expected that the 
final state will also, and that OL * 1 in (2.3) will 
apply. At somewhat lower Rayleigh number (450 
2 r > 200), different stable attractors still simulta- 
neously coexist but long chaotic transients do not 
occur. Even in this range it is probable that final 
state sensitivity will occur. 
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5. Locally connected basin boundaries 

In this section we discuss basin boundaries which 
are continuous curves or surfaces, but are fractal 
in that they possess a noninteger capacity dimen- 
sion and are nowhere differentiable. We shall focus 
on two-dimensional maps because these systems 
are relatively simple, computationally rapid to 
evolve in time, and because they offer a fairly clear 
visualization of the properties of basin boundaries. 
We first discuss the tangent map and its Lyapunov 
numbers. 

For a general two-dimensional map M, the tan- 
gent map TM (the Jacobian matrix of M) maps 
infinitesimal displacements (6x,, 6~“) near (xn, yn) 

to (&x,+1, &Y,+t) near (~,,+~,y,,+t). We now de- 
fine the Lyapunov number of an orbit. Consider a 
forward orbit 0 + given by the sequence (x0, YO; 

x1, y,; . . . ; x,,,, yN). By the chain rule for partial 
differentiation, TM@‘)&, yO) = TM(x,, YN) l 

TWX,-,, yjv-1) l -. - l TM(x,, y,,). Let I:(N) 
and f:(N) be the eigenvalues of TM(N)(x,, YO), 
with 11:12 l/:1. The Lyapunov numbers for the 
initial condition (x,, yO) are 

(5.1) 

and the Lyapunov exponents are h& = In &. In 
practice, these limits appear to exist and can be 
estimated easily in numerical computations. In this 
paper we shall also be interested in Lyapunov 
numbers for inverse orbits. That is, we start at 
(x0, y,,) and consider a sequence of preimages 

(x0, vo; x-i, y-i; . . ..x_., y_,); we denote this 
backwards orbit 00. Infinitesimal displacements 
(Sx,, Sy,) near (x0, yo) are mapped backwards by 
the N-composed linear map TM(-N)(x,, yo)= 

TM-‘(x-,, Y-~) l TM-‘(x+,1, Y_~+I) l . . . l 

TM-‘(x0, yo), where TM-’ is the inverse of the 
matrix TM. Denoting the eigenvalues of TM’-“‘) 
by I;(N) and I;(N), with I/;[ I [/;I, the Lyapunov 
numbers associated with O- are 

(5.2) 

The backward orbit O- from (x,, yo) is in gen- 
eral not uniquely determined by (x0, yo) because 
the map M may not have a unique inverse. One 
must remember, therefore, that the backwards 
Lyapunov numbers & refer to a particular back- 
wards orbit; a different backwards orbit from 
(x0, yo) may possess a different set of backwards 
Lyapunov numbers. 

5.1. Analytic maps 

A particular class of two-dimensional maps can 
be constructed by identifying the plane W2 with 
the one-dimensional complex plane 4=’ and con- 
sidering mappings z, + 1 = F(.z,), where F is an 
analytic function of the single complex variable 
z = x + i y. Such a mapping can be resolved to give 
a two-dimensional map with 

x n+l =f(x,, Y,) = ReF(x, + iY,,>, 

Y n+1= dxn, y,) = Im F(x, + iy,). 

For brevity, we refer to two-dimensional maps 
which satisfy this condition as analytic maps. 
Several properties of these maps greatly facilitate 
their analysis, and therefore they have been the 
subject of much study [ll]. We emphasize, how- 
ever, that this is a very special class of two-dimen- 
sional maps because the functions f(x, y) and 
g(x, y) must obey the Cauchy-Riemann condi- 
tions in these cases. 

The attractors in analytic maps may be fixed 
points or periodic orbits. A particular analytic 
map can possess more than one attractor with 
basins of attraction separated by continuous 
curves. Despite being continuous, a basin boundary 
in an analytic map may be nowhere differentiable 
and may possess a fractal dimension. For our 
purposes the main facts that we should be aware 
of concerning analytic maps are (1) they do not 
exhibit strange attractors; (2) their basin 
boundaries (Julia sets) are typically fractal curves 
which exhibit two-dimensional structure on arbi- 
trarily small scales; and (3) their basin boundaries 
are quasicircles. An example of such a basin 
boundary is shown in fig. 4. 
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5.2. An explicit construction of a locally connected 
fractal boundary 

In this subsection we consider a two-dimen- 
sional map for which an explicit expression for the 
basin boundary can be derived, 

X “+ 1 = X,X, (mod I), (5.3a) 

Y n+, = X,Y” + cos277x,, (5.3b) 

Here A, is an integer, x is restricted to the unit 
interval, but y is allowed to take on all values. The 
case Xx = 2 and IX,1 c 1 has been studied by 
Kaplan and Yorke [22] and has been shown to 
possess a chaotic attractor which attracts almost 
all initial conditions. In the following, however, we 
study the quite different case [4] X, > X, > 1. 

The linearized (or tangent) map 

l 
Y 

has eigenvalues X, and X,, which are both greater 
than one. Thus, since local displacements are al- 
ways expanded independent of location or initial 

2.08 

005 
x- 

(a) 

direction, there are no attractors for this map at 
finite y. Furthermore, initial conditions with large 
(y,l rapidly approach _t 00 as X”, y,, depending on 
the sign of y. Since no finite attractors exist, we 
see that the two points at infinity (y = + 00 and 
y = - cc) are the only attractors. 

A picture of the basins for each of these attrac- 
tors is displayed in fig. 19 for the case X, = 3, 
X, = 1.5. The dark region is the basin B_ for the 
attractor at y = - cc and the blank region is the 
basin B + for y = + co. The magnification in fig. 
19b reveals that linear structure is present on a 
very small scale; indeed, similar pictures are ob- 
tained with repeated magnification of the boundary 
region. The linear, or “striated” structure on all 
scales is quite different from the “two-dimen- 
sional” or “snowflake” form exhibited by the com- 
plex analytic maps of the previous subsection. 

We now show that the basin boundary (fig. 19) 
is a continuous curve of the form y = B(x). In 
order to proceed, we make use of the fact that 
since the basin boundary repels trajectories (they 
all eventually approach f cc), it is an attractor for 
inverse orbits. The map (5.3) is noninvertible; 

(b) 
Fig. 19. (a) Basin structure of the system given in eqs. (5.3) with h, = 3, A,. = 1.5: dark for the basin of .y = - M, blank for the basin 
of y = + m. (b) Magnification of the region 0.38317 I x I 0.38327, 0.4450 5 y I 0.4451 revealing striated boundary structure. 
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there are A, (an integer) inverses of each point x,: 
xg!i = (j + x,)/A,, j = 0,. . . , A, - 1. Once a 
particular inverse of x, is chosen, the inverse y,_ 1 

is determined from (5.3b) as 

y,_i = $(y. - cos2*x,_,). 
Y 

(5.5) 

Each of the inverse sequences {(x,, y,,), 

(X,-D Y,-1). . . > must approach the basin 
boundary. 

The construction of the basin boundary now 
proceeds as follows: First, we select an initial 

value x0 at which we wish to determine the 
corresponding y value for the boundary, y. = 
B(x,). Noting that the evolution (5.3a) of the 

x-coordinate is independent of y, we iterate x0 N 
times to produce the one-dimensional x-orbit 

{ x0, x I,“‘, xN}, where x, = A:xo (mod 1). Now 
choose an arbitrary value of y, to pair with the 
final point xN in order to determine the point 
(x,, y,) in the plane. There are h: orbits which 
result in (x,,,, yN) after N steps; one of these must 
begin with initial value x = x0 and proceed along 
the x-orbit already constructed. Thus, we can form 
the particular inverse sequence which begins at 
(x,, yN) and ends at (x0, yo) by using repeated 
applications of (5.5) to determine the y,, since all 
the x, are known. For example, we have 

yN-l= $(YN- cos2nx,_,) 
Y 

= fy” - $ cos(2aX;-?u,), 
Y Y 

YN- -2 = kYN - $ cos(27rx~-‘xo) 
Y Y 

- ; cos(27rh~-*x,). 
Y 

Thus the expression for y, is 

(5.6) 

y. = 2 - ; h,‘cos (2nX(,i-‘)x0), (5 07) 
.Y j-l 

and, letting N ---) cc, we see that the basin boundary 
is 

y=B(x)= - f X,jcos(2~A;-‘x). (5.8) 
/=I 

As discussed in section 3.3, this expression im- 
plies that the basin boundary B(x) is a continu- 
ous, nowhere differentiable curve (but not a 
quasicircle). For a check on our numerical proce- 
dure for measuring the uncertainty exponent (Y, we 
have applied it to the case shown in fig. 19 (X, = 3, 
X, = 1.5). The resulting value (Y = 0.38 compares 
well with that given by the expression for the 
capacity dimension (see section 3.3): (Y = D - d = 

2 - d = (In X,/in h,) = 0.37.. . in this case. 
We have presented now two examples of locally 

connected fractal basin boundaries. The typical 
boundary for a quadratic analytic map (see fig. 4) 
was described as possessing a “snowflake” struc- 
ture, whereas the fractal boundary for the map 
(5.3) exhibits a “striated” or stretched shape. In 
order to explain the difference between the 
boundary of fig. 19 and that of fig. 4, we consider 
the composed linear map 

SX-, = TM-‘(x-,+,) 

*TM-‘(x_,+,)* a.. *TM-‘(x,)*Gx, 

‘L(-“)(xo)*Gxo, (5.9) 

where x = (x, y), 6x = (6x, Sy), and each matrix 
TM - ‘( xi) is given by the inverse of (5.4) evaluated 
at the point xi along any of the h”, inverse orbits 
of length n generated from x0. From (5.4) we have 

TM-‘(x,) = 2a sin2axj 

x,x, %’ 

and therefore L(-“’ is of the form 

L’YX,) = (R,“;l;a, hg.). 

1 (5.10) 

(5.11) 
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The eigenvalues of L’-“) are (Xi”, Xi”). There- 
fore, the Lyapunov numbers for any inverse se- 
quence of (5.3) as defined in (5.2) are 

p; =A,>112 =X,>l. (5.12) 

Due to the inequality of the two eigenvalues the 
action of L(-“) on a small disk at x,, produces a 
highly eccentric ellipse with length-to-width ratio 
of the order of (AJA,“)“. This results in the struc- 
ture of fig. 19. This is ins contrast to the case of 
analytic maps for which the Cauchy-Riemann 
structure implies that an initial disk remains a disk 
upon iteration (implying that the two Lyapunov 
numbers of the map are equal). This is manifested 
in the “snowflake” structure of the Julia set in 
fig. 4. 

5.3. Nonanalytic noninvertible quadratic maps on 
the plane 

The previous examples of fractal curve basin 
boundaries have arisen in very special cases of 
two-dimensional maps. The class of analytic maps 
is special because of the Cauchy-Riemann rela- 
tions. The map given in eq. (5.3) is also special in 
that the eigenvalues of the tangent map are inde- 
pendent of x and y, and one can construct the 
explicit form of the basin boundary. Thus, in order 
to investigate the properties of basin boundaries 
one might expect to exist in typical dissipative 
dynamical systems, we consider in this subsection 
more general maps of the plane, which have none 
of the special qualities discussed above. 

We shall restrict our attention to quadratic maps 
of the plane 

X,+1 = axxX,2 + axyxnyn + a,y,2 + as, 

+a,y, + a,, (5.13) 

y,+l = &,X,2 + b,,X,Y, + byyY; + bxXn + byY, + b,. 

In general, a map of this form is noninvertible and 
can therefore be argued to exhibit properties found 
in systems of higher dimension. Examples of (5.13), 

such as the Henon map (which is invertible), have 
been studied and have been shown to possess 
chaotic attractors. Also, since analytic maps are a 
subset of the class (5.13) one might expect general 
quadratic maps to exhibit fractal boundaries. Thus, 
we expect that, in general, (5.13) can have both 
fractal basin boundaries and chaotic attractors. 
Our results lead us to believe that striated fractal 
basin boundaries are “common” while the snow- 
flake structure fractal basin boundaries found in 
analytic maps are not. By this we mean that, if 
coefficients of (5.13) are chosen randomly from 
some ensemble with a continuous probability den- 
sity, then the probability of obtaining a map with 
a striated fractal basin boundary would be posi- 
tive, while the probability of a map with a snow- 
flake structure fractal basin boundary would be 
zero. (We also find smooth basin boundaries to be 
common.) 

Surveying the twelve-dimensional parameter 
space of (5.13) in search of fractal boundaries and 
chaotic attractors is clearly an inordinately large 
task. Therefore, we begin with an analytic map 

X n+l =X” z-y;+ ix,- fy,, 

(5.14) 
Y n+i = 2X,Y, + fX, + iY,. 

This map has an attracting fixed point at the 
origin and an attractor at infinity; the basin 
boundary shown in fig. 20 is fractal, though some- 
what less spectacular than that in fig. 4. We then 
alter this map to be nonanalytic by changing the 
coefficients of the linear terms and adding con- 
stant terms until a map with a chaotic attractor is 
found. Such a map is given by 

X n+l =X” 2 -y,’ + x, - 0.297~~ + 0.048, 

Y ,,+, = 2x,y, + x, - 0.6~~. 
(5.15) 

The structure of this map, shown in fig. 5, is 
studied in more detail in ref. 23. Again, initial 
conditions in the dark region escape to infinity; in 
this case, however, orbits in the interior blank 
region approach a chaotic attractor which is also 



S. W. McDonald et al./ Fractal basin boundaries 141 

t 
Y 

-1,6, 
-1,8 I,0 

x- 
Fig. 20. Basin structure for the analytic map given in eqs. 

(5.14): dark for the basin of infinity, blank for the basin of the 

fixed point at the origin. 

displayed. This attractor (here constructed from a 
single initial condition) contains self-intersections 
due to the noninvertibility of (5.15). 

On the scale of fig. 5a, the basin boundary 
appears to be characterized by roughly self-similar 
whorls repeated with varying size and distortion 
around the boundary at intervals which seem to 
accumulate near the point labeled A in the lower 
right-hand comer. This is the location of an un- 
stable fixed point. The tangent map at this fixed 
point has complex conjugate eigenvalues of magni- 
tude greater than one. Thus, in the vicinity of this 
fixed point the map is expanding and rotating; this 
behavior of the boundary near the fixed point is 
revealed under repeated magnification. This struc- 
ture replicated around the boundary has long spiral 

arms (see fig. 5b). As the coefficient uY in (5.15) is 
varied, the attractor is observed to collide with 
these arms in a “crisis” [3, 231, destroying the 
attractor and its basin. 

The microscopic structure at a representative 
location on the boundary is shown in fig. 5c. This 
magnification by a factor of lo7 exposes local 
linear striations similar to that found for eq. (5.3) 

(see fig. 19). Further magnification of any of the 
interfaces between dark and blank in fig. 5c pro- 
duces a similar picture of striations on smaller 
scale, although the pattern of transversal spacing 
may not be the same. Apparently, the magnifica- 
tion of almost any small region around the 
boundary will reveal such structure; the degree of 
magnification required before this structure is ap- 
parent, however, may depend on the location. 
Thus, the “rotating” structures on large scale are 
ultimately replaced on finer scale by striations 
indicating local stretching. An interpretation con- 
necting these observations would be that the local 
leaves or layers are just the flattened extensions of 
many greatly stretched spiral arms in the neigh- 
borhood of some small whorl. This is roughly 
displayed on a large scale in the structure of the 
object labelled B emanating from the spiral fixed 
point at A in fig. 5a. 

The result to be emphasized here is that a 
non-special choice of parameters for a two-dimen- 
sional quadratic map can produce either a smooth 
boundary or a boundary with a fractal character 
of local striations as opposed to the “snowflake” 
pattern of analytic maps. The uncertainty expo- 
nent (Y for fig. 5 is approximately 0.7. This would 
indicate a fractal dimension of 1.3, using (2.4). 

The “striations” of the boundary in this exam- 
ple are reminiscent of the simple model for this 
behavior provided by (5.3) of the previous subsec- 
tion. In that case, the linear structure was interpre- 
ted in terms of the Lyapunov numbers of the 
inverse mapping. That model is simple, however, 
in that not only can one calculate this effect, but 
the stretching occurs in the same direction (y) 
independent of location on the boundary and the 
Lyapunov numbers are independent of inverse 
path. Here, no analytic calculation of Lyapunov 
numbers is possible. Thus, a numerical computa- 
tion of inverse orbits and corresponding Lyapunov 
numbers (which now will depend on the inverse 
sequence chosen) is required to investigate this 
connection. This will be discussed in section 6. 

In addition to this single example (5.15), we 
have surveyed many other noninvertible quadratic 
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maps of the class (5.13). We restricted our atten- 
tion to those maps for which the origin is a fixed 
point, a, = b, = 0. Furthermore, we considered 
only the cases in which the origin is unstable so 
that either some other finite attractor exists of 
almost all orbits escape to infinity. For each case 
considered in this class, we examined the orbits 
generated by 63 initial conditions in the neighbor- 
hood of the origin; if all of these did not tend to 
infinity, we concluded that for this case a finite 
attractor must exist. Sampling 6400 maps in this 
way, we found that roughly 17% of the cases 
satisfied this condition for possessing multiple at- 
tractors. From this collection of approximately 
1000 maps, we selected several random examples 
for further investigation of their basin boundaries. 
On this basin, our findings can be summarized as 
follows: 

1) In general, a quadratic noninvertible map of 
the plane may possess multiple attractors with a 
basin boundary which can either be a smooth 
curve or a fractal. 

2) In the case of a fractal curve basin boundary, 
the local fractal structure generally exhibits linear 
striations (as opposed to the “snowflake” pattern 
of analytic maps). 

Thus we believe that small-scale, striated struc- 
ture in fractal basin boundaries should commonly 
occur, but that the small-scale, snowflake, two- 
dimensional structure of complex analytic maps is 
very special and should not occur in typical situa- 
tions. 

6. Lyapunov numbers and dimension for the 

measure on fractal basin boundaries 

6.1. Lyapunov numbers for inverse orbits 

Here we discuss the Lyapunov numbers as ap- 
plied to the examples of locally-connected basin 
boundaries in two-dimensional maps considered in 
the previous section. In particular, we consider the 
Lyapunov numbers for an orbit generated by in- 
verse images of an initial point in the vicinity of 
the basin boundary (such points are attracted to 

the boundary). Since the maps which we discuss in 
this section do not have a unique inverse, we need 
a rule for choosing which preimage of a point is to 
be on the inverse orbit. Here we shall choose the 
preimage at random with equal probability for 
each of the possible preimages. In our numerical 
calculations of Lyapunov numbers, we do this by 
making use of a random number generator. An 
orbit produced in this way will generate an 
asymptotic measure on the basin boundary. We 
conjecture that this measure is the same for almost 
all initial conditions in any neighborhood of the 
boundary for which almost all inverse orbits are 
attracted to the boundary. We call the measure 
generated by random choices of preimages the 
natural measure for the basin boundary. 

Fig. 21 depicts the result of plotting 200,000 
inverse iterates for the map of fig. 5 of the previous 
section. The distribution of points on the boundary 
appears to be extremely nonuniform, emphasizing 
certain regions very heavily, while leaving others 
comparatively unexplored. We numerically obtain 
the smallest Lyapunov number by finding the 
largest eigenvalue of the composition of the in- 
verse tangent map along the inverse orbit (cf. eq. 
(5.2)). Due to the finite precision of numerical 
computations, the largest Lyapunov number p; 
is usually inaccurately given by the smallest ei- 
genvalue of the composed inverse tangent map. 
Therefore, in order to compute it we take products 

IS 

Fig. 21. Inverse orbit on the boundary of fig. 5 (eqs. (5.15)) 

with 200,000 iterations. At each stage of the inverse iteration, 

the choice between two possible preimages was made at ran- 

dom. 
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of the determinant of the individual tangent maps 
along the inverse orbit to obtain the determinant 
of the N-times composed inverse tangent map. 
Since this determinant is equal to the product of 
the eigenvalues of the composed matrix, and since 
we know the largest eigenvalue, we thus determine 
the smallest eigenvalue. 

We emphasize that the Lyapunov numbers that 
we obtain in this way are Lyapunov numbers 
appropriate to the natural measure generated by 
the inverse orbit. That is, the stretching properties 
of those regions of the boundary with larger mea- 
sures are more strongly weighted in the calculation 
of the Lyapunov numbers than are those regions 
with smaller measures. 

For the three examples discussed in section 5 we 
have the following results for the Lyapunov num- 
bers: 

1) For the analytic map of fig. 4, a numerical 
calculation of the Lyapunov numbers (both are 
equal for analytic maps) yields ~11~ = 2 to within 
numerical accuracy ( * 0.01). 

2) For the map (5.3) it is easy to show that 
p; =A, and cl; =A,. 

3) For the map of fig. 5 we numerically obtain 
CL; = 2.15 and II; = 2.09. 

6.2. Dimension of the measure for fractal basin 
boundaries 

For the case of chaotic attractors, a formula for 
the dimension of the measure on the attractor has 
been conjectured [12, 221 and gives correct results 
in examples where the dimension of the measure is 
known. For a discussion and definitions of the 
dimension of the measure see Farmer, Ott, and 
Yorke [12]. In this subsection we develop an anal- 
ogous conjecture for the dimension of the natural 
measure generated by inverse orbits on. a fractal 
basin boundary. For definiteness in this discus- 
sion, we assume that almost all points on the 
boundary have two preimages. This assumption is, 
in fact, satisfied by our examples of figs. 4 and 21, 
and is also satisfied by eqs. (5.3) if A, = 2. The 
heuristic arguments leading to our expression for 

the dimension of the natural measure of these 
basin boundaries (eq. (6.1)) are similar to those for 
the previous development for the case of chaotic 
attractors; the main difference is that here we need 
to account for the fact that there are two pre- 
images for points on the boundary. 

Say we have an initial set of N, small squares of 
side e0 covering the boundary. Now apply the 
inverse map n times to each square on the 
boundary. Each square will be mapped to 2” small 
parallelograms, typically with length of the order 
of E&P;)” and width of the order of E&A;)” 
(we assume that both cl; and I*; are larger than 
one). Since the boundary is invariant, the collec- 
tion of these 2”i’V,, parallelograms also covers the 
basin boundary. We can typically cover each 
parallelogram with of the order of (CL;/&)’ small 
boxes of side E, = @(PC)“. Thus, if we assume 
that it takes N(E) - eed boxes of side E to cover 
the boundary, then 

= (E,/Eo)d= (cl;)-““. 

Thus taking logarithms, we obtain 

di_ = I + [ln(2AG)]/ln~;, (6.0 

where the subscript L denotes that (6.1) is a pre- 
diction based on the Lyapunov numbers, and we 
call d, the Lyapunov dimension of the boundary. 
Since the Lyapunov numbers reflect behavior for 
points on the boundary weighted by the natural 
measure on the boundary, we conjecture that d, is 
equal to the dimension of the natural measure of 
the boundary (which is usually not the same as the 
capacity dimension). See ref. 12 for further discus- 
sion. 

For the case of the analytic map of fig. 4, 
/A; = p; = 2 yields d, = 1. This is in agreement 
with the rigorous theoretical result of Manning 
[24] for Julia sets of polynomial analytic maps. 
Note, however, that the capacity dimension as 
measured by the final state sensitivity exponent (Y 
is approximately 1.3 > 1. For fig. 4, this may be 
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viewed as a reflection of the fact that the measure 
generated by randomly chosen inverse iterates is 
highly concentrated on a set of lower dimension 
than the capacity of the boundary. The situation is 
very similar for the case of the boundary shown in 
fig. 5 for a nonanalytic quadratic map. In that case 
our numerically calculated Lyapunov numbers 
yield d, = 0.94, while the final state sensitivity 
exponent yields a capacity dimension of about 1.3. 
For the case of the boundary for the map (5.3) 
with X, = 2, (6.1) yields 

lnX, 
d,=2- m> 

appearance (e.g., fig. 5), rather than a two-dimen- 
sional (or snowflake) appearance (e.g., fig. 4). 

5) The dimension of the measure generated by 
inverse orbits on a fractal basin boundary and its 
possible connection with the associated Lyapunov 
numbers has been discussed (section 6). 
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in agreement with the rigorous result of Kaplan, 
Mallet-Paret and Yorke [14]. 

Appendix A 

7. Conclusions 

Basin boundaries for typical dynamical systems 
can be expected to be either smooth or fractal. In 
this paper we have investigated fractal basin 
boundaries. Our main conclusions are as follows: 

1) Fractal basin boundaries can strongly affect 
the ability of predicting to which attractor a sys- 
tem eventually goes. In particular, a substantial 
reduction in the error in the initial condition can, 
under some circumstances, lead to only modest 
increase in predictive ability (section 2). 

2) Fractal basin boundaries can be classified as 
being either locally disconnected or locally con- 
nected (section 3). 

3) Examples of locally disconnected basin 
boundaries resulting from horseshoe type dy- 
namics appear to be common (section 4). 

4) Locally connected basin boundaries may or 
may not be quasicircles (section 3). Quasicircle 
basin boundaries, as exemplified by analytic map- 
pings of a single complex variable, however, ap- 
pear to be very special and are not to be expected 
in general (section 5). As a result, fine scale struc- 
ture of locally connected boundaries should, most 
commonly, exhibit a one-dimensional (or striated) 

cx = 1 Basin boundaries with f(e) not proportional 
to E 

In this appendix we consider basin boundaries 
for which (Y = 1 according to our definition (2.7), 
but for which f(e) ; k& for small E does not hold. 
In particular, consider the example in fig. 22a. 
This figure shows two basins of attraction (the 
dark and blank regions) for the H&on map at 
parameter values such that the map has two dis- 
tinct strange attractors. The map corresponding to 
this figure is given by x,+ i = 1 - 1.0807x,2 + y,,, 

Y n+l = 0.3 x,. Fig. 22b shows a magnification of 
the boxed region in fig. 22a and fig. 22c is a further 
magnification of the boxed region in fig. 22b. The 
replication evident on comparison of figs. 22b and 
22c is not a consequence of fractal structure, but 
rather of the fact that an unstable saddle fixed 
point is located in the center of these figures. 
Indeed, the basin boundary here is a smooth curve 
with dimension one. 

To understand how the structure illustrated in 
figs. 22 arises, consider the stable and unstable 
manifolds of the fixed point (FP), as shown in fig. 
23. The stable manifold (shown as a dashed line in 
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Fig. 22. (a) Basin structure of the Henon map at parameter values for which both a four-piece chaotic attractor (shown. with blank 

basin) and a six-piece chaotic attractor (not shown, dark basin) exist. Figs. 22a-c adapted from the second of ref. [3]. (b) 

Magnification of rectangle in (a). The vertical bands accumulate (transversally, along the unstable manifold) at the piece of the stable 

manifold (cf. fig. 22) running vertically just left of center in the small rectangle; indeed, the fixed point FP in fig. 25 is in this small 

rectangle. (c) Magnification of small rectangle in (b) by a factor A’“. 

fig. 23) is in the direction along the bands in fig. the unstable manifold will be drawn in toward the 
22, while the unstable manifold cuts across them. fixed point, contracted in width (by approximately 
In particular, the bands accumulate at the piece of lXUJ-‘), flipped to the other side of the fixed point 
the unstable manifold shown dashed in fig. 23. The (because A, is negative), and stretched out along 
stable and unstable eigenvalues of the Jacobian the stable manifold (by A;‘). In fact, fig. 22c is a 
matrix at the fixed point are A, = 0.17931.. . and magnification of fig. 22b by precisely the amount 
Au = - 1.6731.. . . Now consider the application X2, (corresponding to two applications of the in- 
of the inverse mapping to fig. 22b. Bands crossing verse map). 
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Fig. 23. Pieces of the stable (dashed) and unstable (solid) 

manifolds of the unstable fixed point (FP) in the Henon map. 

Adapted from the second of ref. [3]. 

We now consider fig. 22b and attempt to deduce 
how the uncertain fraction of this region behaves 
for small initial error E. First we note that the 
phase space in fig. 22b that is within E of the 
dashed portion of the stable manifold of FP shown 
in fig. 23 is uncertain. We now wish to estimate the 
volume of the uncertain phase space that is outside 
this inner strip. Since, for small E this volume will 
turn out to be larger than the volume of the strip 
itself, it is the outside region which will determine 
f(e). In order to estimate the number of boundary 
lines outside the inner strip, we first note that all 
of the boundary lines outside the inner strip in fig. 
22b can be regarded as being generated (via in- 
verse mapping) from the four outermost boundary 
lines. Say we consider these four outermost lines 
and apply the inverse map to them until they first 
fall within the inner strip of width E. Call the 
number of iterates necessary to do this r. If w is 
the x-width of fig. 22b, in order of magnitude we 
have 

e/w - JhJ’. Thus, 

r= K, ln(l/e), 

for small E, where K, is a constant. Since by 
construction these boundary lines that are outside 
the inner strip are all separated by distances of the 
order of E or greater, we have that for small E, f(e) 
is proportional to r& or 

f(a) = KZeln(l/e). 64.1) 

Other examples also exist. In particular, if one 
considers the final phase sensitivity (cf. section 
4.2-l) of the period two orbit for the logistic map 
(in the parameter range below that at which period 
doublings accumulate), then one finds f(e) ; 
K, ln(l/e). As in the case of figs. 22, the reason 
for this behavior involves a period one unstable 
fixed point. 
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