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EXERCISES

1. In each case, show that any singular point of the function is a pole. Determine the
order m of each pole, and find the corresponding residue B.

2 2 3
(@) =12, (b)( : >; () 2P
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Ans. (a)m=1,B=3; (b)m=3,B=-3/16; (¢)m=1,B==+i/2n.
2. Show that
7174 14+
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(c) Res =—— (]z] > 0,0 < argz < 2m).
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3. Find the value of the integral

/ 327342
——dz,
cz=D(E*+9)

taken counterclockwise around the circle (a) |z — 2| = 2; (b) |z| = 4.

Ans. (a) wi; (b) 67i.
/ dz
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4. Find the value of the integral
taken counterclockwise around the circle (a) |z] =2 (b) |z + 2| = 3.

Ans. (a) i/32; (b)O0.
coshmz
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5. Evaluate the integral
when C is the circle |z| = 2, described in the positive sense.
Ans. 4mi.

6. Use the theorem in Sec. 71, involving a single residue, to evaluate the integral of f(z)
around the positively oriented circle |z| = 3 when

(3z42)° 21 -32) Bellz
WIO= ey PO Tas IO
Ans. (a) iy, (b)) =3mi; (c) 2mi.
7. Let zo be an isolated singular point of a function f and suppose that
¢(2)
(z =z’

where m is a positive integer and ¢(z) is analytic and nonzero at zo. By applying
the extended form (6), Sec. 51, of the Cauchy integral formula to the function ¢(z),

f@)=
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show that

9"V (z0)

Res f@ =1

as stated in the theorem of Sec. 73.

Suggestion: Since there is a neighborhood |z — z¢| < € throughout which ¢(z) is
analytic (see Sec. 24), the contour used in the extended Cauchy integral formula can
be the positively oriented circle |z — zo| = &/2.

75. ZEROS OF ANALYTIC FUNCTIONS

Zeros and poles of functions are closely related. In fact, we shall see in the next
section how zeros can be a source of poles. We need, however, some preliminary
results regarding zeros of analytic functions.

Suppose that a function f is analytic at a point zg. We know from Sec. 52 that
all of the derivatives f™(z) (n =1,2,...) exist at zo. If f(zg) =0 and if there
is a positive integer m such that £ (z) /0 and each derivative of lower order
vanishes at zg, then f is said to have a zero of order m at zg. Our first theorem
here provides a useful alternative characterization of zeros of order m.

Theorem 1. Let a function f be analytic at a point zg. It has a zero of order
m at zq if and only if there is a function g, which is analytic and nonzero at zq, such
that

(1) @) =(@—20)"g).

Both parts of the proof that follows use the fact (Sec. 57) that if a function is
analytic at a point zg, then it must have a Taylor series representation in powers of
Z — zo which is valid throughout a neighborhood |z — zg| < € of zp.

We start the first part of the proof by assuming that expression (1) holds and
noting that since g(z) is analytic at zo, it has a Taylor series representation

g'(z0) g” (zo)
—(—z

(z —z0)> +-

g(@) =
in some neighborhood |z — zg| < € of zp. Expression (1) thus takes the form

£ =g —z0)" + 2 5'0)( — 7o) + gz(_fo)(z )"

when |z — zg| < &. Since this is actually a Taylor series expansion for f(z), accord-
ing to Theorem 1 in Sec. 66, it follows that

2) fzo) = f'@o) = f'zo) == f" V(z) =0
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It now follows from equation (2) that
R 2
lim / v dx = z,
R—o0 J_p x6 +1 3

o x2 T
P.V./ ——dx = —.
oo X0+ 1 3

Since the integrand here is even, we know from equation (7) in Sec. 78 that
o x? g

4 —dx = —.
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EXERCISES

Use residues to evaluate the improper integrals in Exercises 1 through 5.

1.food—x.
0 )C2+1

Ans. /2.

5 fw dx
oo DY

Ans. /4.

3./00‘1—’“.
o x*+1

Ans. n/(2x/§).

or

4 /°° x2dx
o 24+ DE2+4)
Ans. /6.
5 fw x2dx
Tl @2 H9E2+ 4
Ans. 7 /200.

Use residues to find the Cauchy principal values of the integrals in Exercises 6
and 7.

6 fw dx
o X2 2x 42

fw xdx

7. .

oo 2+ D(x2+2x+2)
Ans. —m /5.

8. Use a residue and the contour shown in Fig. 95, where R > 1, to establish the inte-

gration formula
/ © dx 27
0o X+1 33
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Rei27!/3

FIGURE 95

9. Let m and n be integers, where 0 < m < n. Follow the steps below to derive the

integration formula
/ o x2m T 2m + 1
———dx = —csc ).
0 X +1 2n 2n

(a) Show that the zeros of the polynomial z2* + 1 lying above the real axis are

2k + D

k=0,1,2,....n—1
2 =

Cr = exp [i
and that there are none on that axis.
(b) With the aid of Theorem 2 in Sec. 76, show that
2" Lokt
Res —— = ——¢' o k=0,1,2,....,n—1
a1 2w ( n=1

where ¢, are the zeros found in part (a) and

2m + 1
= T
2n
Then use the summation formula

n—1

1-7"

= ; (z A1)

k=0 -7

(see Exercise 9, Sec. 8) to obtain the expression

T
2mi E Res ——— PR —.
5= cx 7" " nsina

(c) Use the final result in part (b) to complete the derivation of the integration formula.

10. The integration formula

e dx
fo [(x% —a)>+1]2 8«/—A3[(2a +3)VA+a+aVvA-al
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where a is any real number and A = +/a? + 1, arises in the theory of case-hardening
of steel by means of radio-frequency heating.* Follow the steps below to derive it.

(a)

(b)

(c)

Point out why the four zeros of the polynomial
9@ =@ —a) +1
are the square roots of the numbers a = i. Then, using the fact that the numbers
1
20 = E
and —zo are the square roots of a + i (Exercise 5, Sec. 10), verify that +7g are

the square roots of @ — i and hence that zp and —Zg are the only zeros of ¢(z) in
the upper half plane Imz > 0.

Using the method derived in Exercise 7, Sec. 76, and keeping in mind that z% =a+i
for purposes of simplification, show that the point zg in part (a) is a pole of order 2
of the function f(z) = 1/[q (2))? and that the residue By at 7 can be written

WA+a+ivA—a)

_ 4"k _a—iQa’+3)
[¢'z)?  16A%z

1=

After observing that ¢'(—Zz) = — ¢’(z) and ¢ (=) = q¢”(z), use the same method
to show that the point —Zg in part (a) is also a pole of order 2 of the function

f(z), with residue
q" (z0) —
B,={—"=t=—-8B.
? {[q%zO)P} !

Then obtain the expression

1
B+ By = - Im

—a+i(2a® +3)
8A2j

20

for the sum of these residues.

Refer to part (a) and show that |g(z)| = (R — |zo])* if |z| = R, where R > |zo].
Then, with the aid of the final result in part (b), complete the derivation of the
integration formula.

80. IMPROPER INTEGRALS FROM FOURIER ANALYSIS

Residue theory can be useful in evaluating convergent improper integrals of the

form

)

/oo f(x)sinaxdx or /oo f(x)cosaxdx,

*See pp.

359-364 of the book by Brown, Hoyler, and Bierwirth that is listed in Appendix 1.



