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If we replace the index of summation #z in the first of these series by n — 1 and then
interchange the two series, we arrive at an expansion having the same form as the
one in the statement of Laurent’s theorem (Sec. 60):

oo n 0 1
) f@ =57 +3 5 <kl<o.
n=0 n=1

Since there is only one Laurent series for f(z) in the annulus D;, expansion (4) is,
in fact, the Laurent series for f(z) there.

EXAMPLE 5. The representation of the function (1) in the unbounded
domain D3, where 2 < |z] < oo, is also a Laurent series. Since [2/z| < 1 when
z is in Ds, it is also true that |1/z| < 1. So if we write expression (1) as

1 1 1 1

fOy =i e
we find that
oo oo oo
1 2" 1—=2"
f@=2 =L = Lo C<Rl<o0).
n=0 n=0 n=0

Replacing n by n — 1 in this last series then gives the standard form
e A
) f@=) —— @<ll<

n=1

used in Laurent’s theorem in Sec. 60. Here, of course, all the a,’s in that theorem
are zero.

EXERCISES

1. Find the Laurent series that represents the function
(1
f@=2 sm(—2>
b4
in the domain O < |z] < 0.

(=n" 1
Ans. 1+Z(2n+1)' .ZW.

2. Derive the Laurent series representation

& 1| &+ 1D 1 1
2 1 .
" e[g(n+2)!+z+l+(z+l)2:| (0 < |z4 1] < 00)
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3. Find a representation for the function

1 1 1
f(Z)_1+z=E.1+(l/z)

in negative powers of z that is valid when 1 < |z| < oo.

Ans. i (_1)n+l .

n
n=1 <

4. Give two Laurent series expansions in powers of z for the function

1
f@)= 12(1——1)’

and specify the regions in which those expansions are valid.

11 1

Ans. Zz o+ O<ll<D —Zz—n (1 < |z] < 00).
n=0 n=3

5. Represent the function

z+1

f@="—

(a) by its Maclaurin series, and state where the representation is valid;
(b) by its Laurent series in the domain 1 < |z| < oco.

o0

1

Ans. (@) =1 =23 2" (z2l<1); (b)) 142) -
n=1 n=1

6. Show that when 0 < |7 — 1| < 2,

_ -D* 1
m Z 222z — 1)

7. Write the two Laurent series in powers of z that represent the function

1
)= —5¢
f@ z(1+z2%)
in certain domains, and specify those domains.
o P 1 (- 1)n+1
Ans. Y (=12 4 - 0 < |z| < 1); Z i (1 < |z| < 0).
n=0
8. (a) Let a denote a real number, where —1 < a < 1, and derive the Laurent series
representation
a > a"
=Y = (al <zl <o0).
z—a b4
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(b) After writing z = ¢! in the equation obtained in part (a), equate real parts and
then imaginary parts on each side of the result to derive the summation formulas

nd acos® — a? nd asinf
Za”cosn&:—2 and Za”sinn&:—z,
= 1 —2acosf +a = 1 —2acosf +a

where —1 < a < 1. (Compare with Exercise 4, Sec. 56.)

9. Suppose that a series
o0

Z x[nlz™"

n=—00

converges to an analytic function X (z) in some annulus R; < |z| < R,. That sum X (z)
is called the z-transform of x[n] (n =0, £1, £2,...).* Use expression (5), Sec. 60,
for the coefficients in a Laurent series to show that if the annulus contains the unit
circle |z| = 1, then the inverse z-transform of X (z) can be written

[
x[n] = —/ X®e™do (n=0,£1,+2,..).
27 J_»

10. (a) Let z be any complex number, and let C denote the unit circle
w=e? (-m=¢=mn)

in the w plane. Then use that contour in expression (5), Sec. 60, for the coefficients
in a Laurent series, adapted to such series about the origin in the w plane, to show
that

i) S 0o

where

Jn(z)=%/ expl—i(ng — zsing)ldp  (n=0,£1,£2,...).

(b) With the aid of Exercise 5, Sec. 38, regarding certain definite integrals of even
and odd complex-valued functions of a real variable, show that the coefficients in
part (a) here can be written”

Jn(z) = %fﬂ cos(ng —zsing)dg  (n=0,£1,£2,...).
0

*The z-transform arises in studies of discrete-time linear systems. See, for instance, the book by
Oppenheim, Schafer, and Buck that is listed in Appendix 1.

TThese coefficients J,(z) are called Bessel functions of the first kind. They play a prominent role in
certain areas of applied mathematics. See, for example, the authors’ “Fourier Series and Boundary
Value Problems,” 7th ed., Chap. 9, 2008.
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11. (a) Let f(z) denote a function which is analytic in some annular domain about the
origin that includes the unit circle z = et (—m < ¢ <m). By taking that circle
as the path of integration in expressions (2) and (3), Sec. 60, for the coefficients
a, and b, in a Laurent series in powers of z, show that

v U (™ w2 Y ()
- i¢ _ iy = .
@ =5 _ﬂf(e )de+ ;:1 _ﬂf(e )[(ei¢> +<Z ) ]d¢

when z is any point in the annular domain.

(b) Write u(8) = Re[ f(¢/?)] and show how it follows from the expansion in part (a)
that

1 [ e [T
w0) = 5 [ w@rdo+ 2 Y [ ut@rcostn@ ~ p)1as.
— =17

This is one form of the Fourier series expansion of the real-valued function
u(0) on the interval —m < 0 < m. The restriction on u(f) is more severe than is
necessary in order for it to be represented by a Fourier series.*

63. ABSOLUTE AND UNIFORM CONVERGENCE
OF POWER SERIES

This section and the three following it are devoted mainly to various properties of
power series. A reader who wishes to simply accept the theorems and the corollary
in these sections can easily skip the proofs in order to reach Sec. 67 more quickly.

We recall from Sec. 56 that a series of complex numbers converges absolutely
if the series of absolute values of those numbers converges. The following theorem
concerns the absolute convergence of power series.

Theorem 1. If a power series

(1 > anz —z0)"

n=0

converges when z = z1 (21 /=z0), then it is absolutely convergent at each point z in
the open disk |z — zo| < Ry where R = |z1 — zo| (Fig. 79).
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*For other sufficient conditions, see Secs. 12 and 13 of the book cited in the footnote to Exercise 10.
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That is,
1 1 1
e 2 A
14+22/31+24/5! 4+ - -~ 3!Z+[(3!)2 5!]Z+
or
1 1 7
o ST ST :
R e Ty 6 360" T (el =m
Hence
1 1 11 7
9) e ——7 4 0 < Izl < m).

Zsinhz 23 6 z ' 360
Although we have given only the first three nonzero terms of this Laurent series,
any number of terms can, of course, be found by continuing the division.

EXERCISES
1. Use multiplication of series to show that
et 1 1 5,
—— =41z ==+ 0<|z] <1).
2@+ oz 276 ©<kl<D

2. By writing csc z = 1/sinz and then using division, show that
1 + 1 + 1 1] 5 + © < 2] )
cscz=—+ — —_— = = < |z| < 7).
TR FETERT ¢
3. Use division to obtain the Laurent series representation

L S LI 0 < [2] < 2m)
-4 < |z] < 2m).
—1 7z 27 12° 70° ¢

4. Use the expansion

! P_1 1+ ! + 0 < |z )
- = - — . = _ < <7
Zsinhz 2 6 2 360° :

in Example 2, Sec. 67, and the method illustrated in Example 1, Sec. 62, to show that

/ dz  mwi
c z2sinhz 3~

when C is the positively oriented unit circle |z] = 1.

5. Follow these steps, which illustrate an alternative to straightforward division, to obtain
representation (8) in Example 2, Sec. 67.

(a) Write

1
14+22/314+24/5! 4+ -+

=dy+diz+drz® +dsz® +dszt + -,
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where the coefficients in the power series on the right are to be determined by
multiplying the two series in the equation

1 1
1= (H—;zz—i— 514+-'->(d0+d1z+dzzz+d3z3+d4z4+-'-)-

Perform this multiplication to show that

1 1
(do— 1) +diz + (dz + 5do)z2 + (d3 + 5dl)f

1 1
+(d4+§d2+§d0)24+“'=0

when |z| < 7.

(b) By setting the coefficients in the last series in part (a) equal to zero, find the values
of dy, dy, d», d3, and d4. With these values, the first equation in part (a) becomes
equation (8), Sec. 67.

6. Use mathematical induction to establish Leibniz’ rule (Sec. 67)
(fo" =) (k) fRgr = m=1,2,..)
k=0

for the n" derivative of the product of two differentiable functions f(z) and g(z).
Suggestion: Note that the rule is valid when » = 1. Then, assuming that it is
valid when n = m where m is any positive integer, show that

(fg)(m+1) — (fg/)(’”) + (f/g)(’”)
— fgimtD 4 i [(’Z) + (kT 1)] FR G+ pOntl)
k=1

Finally, with the aid of the identify

() +()=()

that was used in Exercise 8, Sec. 3, show that

m
m—+1 _ )
(fg)(m+1) _ fg(m+1) +Z( P )f(k)g(m-H k) +f(m+1)g
k=1
m+1

m+1 -
_ Z < ! ) FR) gmt1=k),
k=0
7. Let f(z) be an entire function that is represented by a series of the form

fR) =z+mz® +a®+--- (Iz] < 00).
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(a) By differentiating the composite function g(z) = f[f(z)] successively, find the
first three nonzero terms in the Maclaurin series for g(z) and thus show that

flf@l=z+2a@* +2(@ +a3)® +--- (Iz] < 00).
(b) Obtain the result in part (a) in a formal manner by writing

flf@Ql=f@Q+amlf@Q1?+alf@]> +---,

replacing f(z) on the right-hand side here by its series representation, and then
collecting terms in like powers of z.

(c) By applying the result in part (a) to the function f(z) = sinz, show that

. 1
sin(sinz) =z — §z3 + .- (Iz] < 00).
8. The Euler numbers are the numbers £, (n =0,1,2,...) in the Maclaurin series
representation
1 L\ E, ,
cosh z Z n! ¢ (2l <7/2)

Point out why this representation is valid in the indicated disk and why
E>i1 =0 (n=0,1,2,...).
Then show that

E():l, E2:—1, E4:5, and E6:—61.



