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which f is analytic, then the value of the integral of f over C; never changes. To
verify the corollary, we need only write equation (2) as

f)dz+ f(2)dz=0
Cy —C

and apply the theroem.

EXAMPLE. When C is any positively oriented simple closed contour sur-
rounding the origin, the corollary can be used to show that

d
= =i,
c <
This is done by constructing a positively oriented circle Cy with center at the origin and
radius so small that Cy lies entirely inside C (Fig. 62). Since (see Example 2, Sec. 42)

dz .
— =2mi
Cy

and since 1/z is analytic everywhere except at z = 0, the desired result follows.
Note that the radius of Cy could equally well have been so large that C lies
entirely inside Co.

1
Ny

FIGURE 62

EXERCISES
1. Apply the Cauchy—Goursat theorem to show that

ff(z)dZZO
c

when the contour C is the unit circle |z| = 1, in either direction, and when
2

a) f(z) = ; b) fay=ze™% ) f(D)=5—F—%:

(a) f(2) p— (b) f@) (c) f(2) P P

Z
(d) f(z) =sech z; (e) f(z) =tanz; (f) f(z) =Log (z +2).
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2. Let C; denote the positively oriented boundary of the square whose sides lie along the
lines x = +1, y = £1 and let C, be the positively oriented circle |z| = 4 (Fig. 63).
With the aid of the corollary in Sec. 49, point out why

/f(z)dz=/ f@dz
Ci Cs

when
@ f@ =357 B f@= Sif]:;/zz); (c) f(2) = l_zez-
y
&
Cy
1 4 x
FIGURE 63

3. If Cy denotes a positively oriented circle |z — zg| = R, then

0 when n = %1, £2, ...,

_ n—1 _
(@—20)" dz= {Zm' when n = 0,

Co

according to Exercise 10(b), Sec. 42. Use that result and the corollary in Sec. 49 to
show that if C is the boundary of the rectangle 0 < x < 3,0 <y <2, described in
the positive sense, then

_o iyl :{O when n = +1,42, ...,
/C(Z B dz 2wi whenn =0.

4. Use the following method to derive the integration formula

S bl
f e~ cos 2bx dx = ?e‘b' b > 0).
0

(a) Show that the sum of the integrals of e along the lower and upper horizontal
legs of the rectangular path in Fig. 64 can be written

—a+ bi a+ bi

FIGURE 64
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a2 2 [ 2
2[ e ¥ dx —2e f e cos2bx dx
0 0
and that the sum of the integrals along the vertical legs on the right and left can

be written
. 2 b 2 i .42 b 2 i2a
ie e e N dy —je™ e’ ey,
0 0

Thus, with the aid of the Cauchy—Goursat theorem, show that

4 2 2 a 2 2 2 b 2
/ e cos2bxdx = e / e dx e @b )/ e¥” sin2ay dy.
0 0 0

(b) By accepting the fact that*

>[5

[e'e)
/ e_xzdx=
0
b vl
5[ e’ dy,
0

obtain the desired integration formula by letting a tend to infinity in the equation
at the end of part (a).

and observing that

b 2
f e’ sin2aydy
0

5. According to Exercise 6, Sec. 39, the path C; from the origin to the point z = 1 along
the graph of the function defined by means of the equations

y(x) = x3 sin (r/x) whenO<x <1,
0 when x =0

is a smooth arc that intersects the real axis an infinite number of times. Let C, denote
the line segment along the real axis from z = 1 back to the origin, and let C3 denote
any smooth arc from the origin to z = 1 that does not intersect itself and has only its
end points in common with the arcs C; and C;, (Fig. 65). Apply the Cauchy—Goursat
theorem to show that if a function f is entire, then

f@dz= | f(zx)dz and f@dz=—| f(2)dz.
Cq (&) C3

C3

Conclude that even though the closed contour C = C| + C» intersects itself an infinite
number of times,

/f(z)dz=0.
c

*The usual way to evaluate this integral is by writing its square as

foo e dx /00 e_yzdy = /oo foo e_(”2+y2)dxdy
0 0 o Jo

and then evaluating this iterated integral by changing to polar coordinates. Details are given in, for
example, A. E. Taylor and W. R. Mann, “Advanced Calculus,” 3d ed., pp. 680—-681, 1983.
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6. Let C denote the positively oriented boundary of the half disk 0 <r <1,0<6 <,
and let f(z) be a continuous function defined on that half disk by writing f(0) =0
and using the branch

f(Z):ﬁeie/z <r>0,—% <9<377r>

of the multiple-valued function z'/%. Show that

/f(@ dz =0
C

by evaluating separately the integrals of f(z) over the semicircle and the two radii
which make up C. Why does the Cauchy—Goursat theorem not apply here?

7. Show that if C is a positively oriented simple closed contour, then the area of the
region enclosed by C can be written
1
— | zdz.
2 J. 0%
Suggestion: Note that expression (4), Sec. 46, can be used here even though the
function f(z) = 7 is not analytic anywhere [see Example 2, Sec. 19].

8. Nested Intervals. An infinite sequence of closed intervalsa, < x <b, (n =0,1,2,...)
is formed in the following way. The interval a; < x < b; is either the left-hand or
right-hand half of the first interval ay < x < by, and the interval ay < x < b, is then
one of the two halves of ) < x < by, etc. Prove that there is a point xo which belongs
to every one of the closed intervals @, < x < b,.

Suggestion: Note that the left-hand end points a, represent a bounded nonde-
creasing sequence of numbers, since ap < a, < a,+1 < bg; hence they have a limit
A as n tends to infinity. Show that the end points b, also have a limit B. Then show
that A = B, and write xo = A = B.

9. Nested Squares. A square op:ap < x < by, co <y <dp is divided into four equal
squares by line segments parallel to the coordinate axes. One of those four smaller
squares o] : a; < x < by, c; <y <d, is selected according to some rule. It, in turn,
is divided into four equal squares one of which, called o, is selected, etc. (see Sec.
47). Prove that there is a point (xg, yo) which belongs to each of the closed regions
of the infinite sequence oy, 01,02, ... .

Suggestion: Apply the result in Exercise 8 to each of the sequences of closed
intervals @, <x <b,andc, <y <d,(n=0,1,2,...).
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Theorem 3.  Suppose that a function f is analytic inside and on a positively
oriented circle Cg, centered at zo and with radius R (Fig. 69). If My denotes the
maximum value of | f(z)| on Cg, then

n'M
2 fP ) < —2 (n=1,2,...).
y
Cy .
% X FIGURE 69

Inequality (2) is called Cauchy’s inequality and is an immediate consequence
of the expression

f(ﬂ)(z)_n_'/ M n=1,2,..),
CR(

2i 7 — 7o)t

which is a slightly different form of equation (6), Sec. 51, when n is a positive
integer. We need only apply the theorem in Sec. 43, which gives upper bounds for
the moduli of the values of contour integrals, to see that

FP o) < 2 MR 2R (=12,
201 = 2 " Rn+l -
where My is as in the statement of Theorem 3. This inequality is, of course, the

same as inequality (2).

EXERCISES

1. Let C denote the positively oriented boundary of the square whose sides lie along the
lines x = £2 and y = £ 2. Evaluate each of these integrals:

e tdz cos 2 ) zdz
(a) cz— (mij2)’ (&) cz(Z2+8) dz ()/C2z+1’
(d) / COSIIZ dz; (e )/ tan(z/2)2 dz (=2 <xy <?2).
c Z (z — x0)

Ans. (a) 2w (b) wi/4; (c)—mwi/2; (d)0; (e)im sec?(xo/2).

2. Find the value of the integral of g(z) around the circle |z — i| = 2 in the positive sense
when

1
(a) g(Z)=2—+4; (b) g(z) =
Ans. (a) T/2; (b) w/16.

1
(22 +4?%
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3. Let C be the circle |z| = 3, described in the positive sense. Show that if

252 —5—2
g(z)zfis ST20s (2l A3,
C —Z

N

then g(2) = 8mi. What is the value of g(z) when |z| > 3?

4. Let C be any simple closed contour, described in the positive sense in the z plane,
and write ;
s+ 2s
)= [ ———ds.
8(2) L Go2?

Show that g(z) = 6wiz when z is inside C and that g(z) = 0 when z is outside.
5. Show that if f is analytic within and on a simple closed contour C and zg is not on
C, then
f'(@) dz _ / f(2)dz
c -2 c (=200

6. Let f denote a function that is continuous on a simple closed contour C. Following
a procedure used in Sec. 51, prove that the function

s = o [ L9

T 2miJe s—z

is analytic at each point z interior to C and that

¢ = f SO D

27i Jo (s —2)?

at such a point.
7. Let C be the unit circle z = ¢! (—m < 0 < ). First show that for any real constant «,
eaZ
— dz =2mi.
c <

Then write this integral in terms of 6 to derive the integration formula
s
f €79 cos(asin@) db = .
0

8. (a) With the aid of the binomial formula (Sec. 3), show that for each value of n, the

function
n

n!on dzn

P.(z) = @-1D" n=0,1,2,..)

is a polynomial of degree n.*

*These are Legendre polynomials, which appear in Exercise 7, Sec. 43, when z = x. See the footnote
to that exercise.
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(b) Let C denote any positively oriented simple closed contour surrounding a fixed
point z. With the aid of the integral representation (5), Sec. 51, for the nth deriva-
tive of a function, show that the polynomials in part (a) can be expressed in the
form

1 (s2—=1"
(@) = 2ty /c (s —z)nt! ds  (n=012..).

(c) Point out how the integrand in the representation for P,(z) in part (b) can be
written (s 4+ 1)*/(s — 1) if z = 1. Then apply the Cauchy integral formula to
show that

P,(1)=1 n=0,1,2,...).

Similarly, show that
P,(=1) = (=1)" n=0,1,2,...).

9. Follow these steps below to verify the expression

pro= L [ 10

i Je (s —2)3

in Sec. 51.
(a) Use expression (2) in Sec. 51 for f'(z) to show that

fe+A)—fl) i/ f)ds 1 [ 3(s—2Az-2(A2) Fs)ds
Az mi Jo (s =23 2mi Jo (s —z— AD(s — 2)? '

(b) Let D and d denote the largest and smallest distances, respectively, from z to
points on C. Also, let M be the maximum value of | f(s)| on C and L the length
of C. With the aid of the triangle inequality and by referring to the derivation of
expression (2) in Sec. 51 for f7(z), show that when 0 < |Az| < d, the value of
the integral on the right-hand side in part (a) is bounded from above by

(3D|Az| +2|AzlHM
d — |Az))2d?

(c) Use the results in parts (a) and (b) to obtain the desired expression for f”(z).

10. Let f be an entire function such that | f(z)| < A|z| for all z, where A is a fixed
positive number. Show that f(z) = @)z, where a; is a complex constant.
Suggestion: Use Cauchy’s inequality (Sec. 52) to show that the second deriva-
tive f”(z) is zero everywhere in the plane. Note that the constant My in Cauchy’s
inequality is less than or equal to A(|zo| + R).

53. LIOUVILLE’S THEOREM AND THE FUNDAMENTAL
THEOREM OF ALGEBRA

Cauchy’s inequality in Theorem 3 of Sec. 52 can be used to show that no entire
function except a constant is bounded in the complex plane. Our first theorem here,



