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EXERCISES
1. Show that
N T 1 .
(a) Log(—ei) =1— Sl, (b) Log(1 —i) = 5 In2 41.
2. Show that

(a)loge=1+42nmi (n=0,=%1,+£2,...);
1
(b) logi = <2n + 5) wi (n=0,%1,£2,...);

1
(c) log(—1 + +/3i) =In2+2 (n + 5) i (n=0,%1,42,...).

. Show that

(a) Log(1 + 2= 2Log(1 +1i); (b) Log(—1+ i)? /2Log(—1+1i).

. Show that

9
(a) log(i?) = 2logi when logz=1Inr + if <r > 0,% <0< T”);

3 1
(b) log(i?) /2logi when logz=1Inr + if (r -0, T’T <6< Tﬂ)

. Show that

(a) the set of values of log(i!/?) is
1
<n+1>ﬂi n=0,%£1,%£2,...)

and that the same is true of (1/2)logi;
(b) the set of values of log(i 2y is not the same as the set of values of 2logi.

. Given that the branch logz =Inr +if (r > 0,0 < 0 < a + 2w) of the logarithmic

function is analytic at each point z in the stated domain, obtain its derivative by
differentiating each side of the identity (Sec. 30)

elogz =z (Z /&0)

and using the chain rule.

. Find all roots of the equation logz = im/2.

Ans. z = I.

. Suppose that the point z = x 4 iy lies in the horizontal strip @ < y < « + 2. Show

that when the branch logz =Inr +i6 (r > 0,0 <0 < a + 2w) of the logarithmic
function is used, log(e®) = z. [Compare with equation (4), Sec. 30.]

. Show that

(a) the function f(z) = Log(z — i) is analytic everywhere except on the portion x < 0
of the line y = 1;

(b) the function

Log(z + 4)

1= 224
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is analytic everywhere except at the points £(1 —i)/+/2 and on the portion
x < —4 of the real axis.

10. Show in two ways that the function In(x> 4+ y?) is harmonic in every domain that does
not contain the origin.

11. Show that |
Reflog(z = Dl =S In[(x = D*+y" (z ~D).

Why must this function satisfy Laplace’s equation when z ~1?

32. SOME IDENTITIES INVOLVING LOGARITHMS

If z; and z, denote any two nonzero complex numbers, it is straightforward to show
that

() log(z1z2) = logz; + log z5.

This statement, involving a multiple-valued function, is to be interpreted in the same
way that the statement

(2) arg(z1z2) = argz; + argz,
was in Sec. 8. That is, if values of two of the three logarithms are specified, then
there is a value of the third such that equation (1) holds.

The verification of statement (1) can be based on statement (2) in the following
way. Since |z122| = |z1]|z2| and since these moduli are all positive real numbers,
we know from experience with logarithms of such numbers in calculus that

In|z1z2] = In|z1| + In|z2].
So it follows from this and equation (2) that

3) In|z1zo| + i arg(z1z2) = (In|z1| + i argzy) + (In|zp| + i arg z0).

Finally, because of the way in which equations (1) and (2) are to be interpreted,
equation (3) is the same as equation (1).

EXAMPLE. To illustrate statement (1), write z; = zp = —1 and recall from
Examples 2 and 3 in Sec. 30 that

logl =2nmi and log(—1) = 2n 4+ 1)mi,
where n = 0, £1, £2, ... . Noting that z;zp = | and using the values

log(z1z2) =0 and logz; = mi,
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EXERCISES
1. Show that if Rez; > 0 and Re zp > 0, then

Log(z1z2) = Log z; + Log z5.

Suggestion: Write ®; = Argz; and ®, = Arg z,. Then observe how it follows
from the stated restrictions on z; and z, that —7 < ®; + ©, < 7.

2. Show that for any two nonzero complex numbers z; and 2,

Log(z1z2) = Log z1 + Log 7o + 2Nwi

where N has one of the values 0, 1. (Compare with Exercise 1.)
3. Verify expression (4), Sec. 32, for log(z1/z2) by

(a) using the fact that arg(z;/z2) = argz; — arg z» (Sec. 8);

(b) showing that log(1/z) = —logz (z A0), in the sense that log(1/z) and —logz
have the same set of values, and then referring to expression (1), Sec. 32, for
log(z122).

4. By choosing specific nonzero values of z; and z,, show that expression (4), Sec. 32,
for log(z1/z2) is not always valid when log is replaced by Log.

5. Show that property (6), Sec. 32, also holds when n is a negative integer. Do this
by writing z'/" = (z//™)~! (m = —n), where n has any one of the negative values
n=—1,-2,... (see Exercise 9, Sec. 10), and using the fact that the property is
already known to be valid for positive integers.

6. Let z denote any nonzero complex number, written z = re'® (—mr < ® < 1), and let
n denote any fixed positive integer (n = 1,2,...). Show that all of the values of
log(z!/") are given by the equation

)

1 0+2 k
log(z"/") = ~Inr +1i +2(pn + k)m
n n

where p=0,+1,+2,...and k =0, 1,2, ...,n — 1. Then, after writing

O+ 2gm
1

)

1 1
—logz=—Inr+
n n

where ¢ = 0, 1, +2, ..., show that the set of values of log(zl/”) is the same as the set
of values of (1/1)logz. Thus show that log(z!/?) = (1/n)log z where, corresponding
to a value of log(z!/") taken on the left, the appropriate value of log 7 is to be selected
on the right, and conversely. [The result in Exercise 5(a), Sec. 31, is a special case of
this one.]

Suggestion: Use the fact that the remainder upon dividing an integer by a positive
integer n is always an integer between 0 and n — 1, inclusive; that is, when a positive
integer n is specified, any integer ¢ can be written ¢ = pn + k, where p is an integer
and k has one of the values k =0,1,2,...,n — 1.
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In view of the periodicity of sin z and cos z, it follows immediately from relaions
(4) that sinh z and cosh z are periodic with period 27i. Relations (4), together with
statements (17) and (18) in Sec. 34, also tell us that

(14) sinhz =0 ifand only if z=nni (n=0,%1,+2,...)
and
(150  coshz=0 ifandonlyif z= (% +nrr>i (n=0,+1,+2,...).

The hyperbolic tangent of z is defined by means of the equation

inh
(16) tanhz = S %

cosh z

and is analytic in every domain in which coshz /40. The functions coth z, sech z,
and csch z are the reciprocals of tanh z, cosh z, and sinh z, respectively. It is straight-
forward to verify the following differentiation formulas, which are the same as those
established in calculus for the corresponding functions of a real variable:

d d
(17 —tanhz = sechzz, —cothz = —cschzz,
dz dz
d d
(18) —sechz = —sechztanhz, — cschz = —cschzcothz.
dz dz
EXERCISES

1. Verify that the derivatives of sinhz and cosh z are as stated in equations (2), Sec. 35.
2. Prove that sinh 2z = 2 sinh z cosh z by starting with

(a) definitions (1), Sec. 35, of sinh z and cosh z;

(b) the identity sin2z = 2sinz cos z (Sec. 34) and using relations (3) in Sec. 35.

3. Show how identities (6) and (8) in Sec. 35 follow from identities (9) and (6), respec-
tively, in Sec. 34.

4. Write sinhz = sinh(x 4+ iy) and coshz = cosh(x + iy), and then show how expres-
sions (9) and (10) in Sec. 35 follow from identities (7) and (8), respectively, in that
section.

5. Verify expression (12), Sec. 35, for |cosh z|2.
6. Show that |sinh x| < |coshz| < coshx by using

(a) identity (12), Sec. 35;

(b) the inequalities |sinh y| < |cosz| < cosh y, obtained in Exercise 9(b), Sec. 34.
7. Show that

(a) sinh(z 4+ i) = —sinhz; (b) cosh(z + mi) = coshz;
(c) tanh(z + 7i) = tanh z.
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become single-valued and analytic because they are then compositions of analytic
functions.

The derivatives of these three functions are readily obtained from their loga-
rithmic expressions. The derivatives of the first two depend on the values chosen
for the square roots:

d ., 1

5) e sin” " z = 7(1 EpENT
d ~1

(6) d_ZCOS = m

The derivative of the last one,
d 1
@) —tan" 'z = —.
dz 1+z
does not, however, depend on the manner in which the function is made single-
valued.
Inverse hyperbolic functions can be treated in a corresponding manner. It turns
out that

(8) sinh~!' z = log[z + >+ 1)1/2] ,
9 cosh™ z =log[z + (z* — D'/?],
and

(10) tanh~!z = %log 1 i_i

Finally, we remark that common alternative notation for all of these inverse
functions is arcsin z, etc.

EXERCISES
1. Find all the values of
(a) tan~'(2i); (b) tan~ (1 + i); (c) cosh™' (—=1); (d) tanh™! 0.

| .
Ans.  (a) (n + 5):1 + %1113 (n=0,41,42,..);

(d) nwi (n =0, £1,£2,...).

2. Solve the equation sinz = 2 for z by

(a) equating real parts and then imaginary parts in that equation;

(b) using expression (2), Sec. 36, for sin”! z.

1 .
Ans. 7 = <2n + 5):1 +iln24++3) (n=0,£1,42,...).
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. Solve the equation cos z = +/2 for z.

1

. Derive formula (5), Sec. 36, for the derivative of sin™" z.
. Derive expression (4), Sec. 36, for tan~! z.
. Derive formula (7), Sec. 36, for the derivative of tan~! z.

. Derive expression (9), Sec. 36, for cosh™!z.
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