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9.6 Exercises

1.

10.

11.

12.

Express the following complex numbers in the form a + bi.

@ a + A (e) A + /A —2i).

(b) 1/i. ) & + 7S

© 1/ + . @1 +i+&+8

d @2 + 3H3 — 4). (h) 3 +HA +i78).
. Compute the absolute values of the following complex numbers.

@ 1+ @1 +i+2

(b) 3 +4i. (e) i + 0

© (O +d/a —i). ) 2(1 =) + 32 +).
. Compute the modulus and principal argument of each of the following complex numbers.
() 20 () (1 + V2.

(b) —3i. (® (=1 +03

© —L (h) (=1 =)

@ 1. @ 1ya +a.

© -3 +13i G 1A + 02
. In each case, determine all real numbers x and y which satisfy the given relation.
@ x +iy =x—1iy. (d) (x + )P =(x —ip-

b . : x+iy .

b) x +iy =[x + iyl (e)x l_y—x—zy

100

© Ix + iyl =x —iyl. ) > i* =x+iy.
. Make a sketch showing the set of all z in the complex plane which satisfy each of the foliowing
conditions.

@ lz| < 1. d |z = 1] =z +1].
b)z+z=1 e lz—1il =z +1|.
©z—z=i f)z+z= |z

. Let fbe a polynomial with real coefficients.

(@) Show thatf(__z) = f(2) for every complex z.
(b) Use part (a) to deduce that the nonreal zeros of f (if any exist) must occur in pairs of con-
jugate complex numbers.

. Prove that an ordering relation cannot be introduced in the complex number system so that

all three order axioms of Section I3.4 are satisfied.

[Hint: Assume that such an ordering can be introduced and try to decide whether the
imaginary unit 7 is positive or negative.]

. Define the following “pseudo-ordering” among the complex numbers. If z = x + iy, we say

that z is positive if and only if x > 0. Which of the order axioms of Section 13.4 are satisfied
with this definition of positive?

. Solve Exercise 8 if the pseudo-ordering is defined as follows: We say that z is positive if and

only if |z| > 0.

Solve Exercise 8 if the pseudo-ordering is defined as follows: If z = x + iy, we say that z is
positive if and only if x > y.

Make a sketch showing the set of all complex z which satisfy each of the following conditions.
@ 12z + 3| < 1. © |z —i <z +1il.

®) |z +1] <z —1|. @ |z| <12z +11.

Let w = (az + b)/(cz + d), where a, b, ¢, and d are real. Prove that

w —w = (ad — bc)(z — 2)[|lcz + dJ?.

If ad — be > 0, prove that the imaginary parts of z and w have the same sign.
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(=0, +0) by the equation f(x) = e'* are solutions of the differential equation (9.16) if
and only if t is a root of the characteristic equation

t24+at+b=0.

Proof. Let L(y) = y" + ay’ + by. Since f'(x) = te', we also have f"(x) = t%", so
L(f) = e*(t2 + at + b). But e® is never zero since ee~* = ¢ = 1. Hence, L(f) =0
if and only if #2 4+ ar + b = 0. But if we write f = u + iv, we find L(f) = L(u) + iL(v),
and hence L(f) = 0 if and only if both L(1) = 0 and L(v) = 0. This completes the proof.

Note: If t = o + if, the real and imaginary parts of f are given by (9.14). If the
characteristic equation has two distinct roots, real or complex, the linear combination

y = cy(x) + cov(x)

is the general solution of the differential equation. This agrees with the results proved
in Theorem 8.7.

9.10 Exercises

1. Express each of the following complex numbers in the form a + bi.

-\ wil2 (o) 7 1 27
\a4) € - &) i T e
(b) e mil2, (f) erilt,
(©) 3em. (g) e/t — emild,
)] —e T, 1 — emi/2
)
2. In each case, find all real x and y that satisfy the given relation.
@ x + iy = xe™. (©) &t = —1,
(b) x +iy = ye*. @ 1 i Z —
3. (a) Prove that e* # 0 for all complex z.
(b) Find all complex z for which e? = 1.
4. (a) If 0 is real, show that
] e 4 o0 . o el — e—i0
cos 6 = 5 an sin 0 = 57

(b) Use the formulas in (a) to deduce the identities

)bt

coc2 A = cin2 A =
cose U sSIn® o

[N

(1 1+ co
(1 +¢o

7]

Y81

D
N

(1 — cos 20)
18 COS 245 .

N

5. (a) Prove DeMoivre’s theorem,
(cos 6 + isin 6)" = cosnb + i sin nb,

valid for every real 6 and every positive integer .
(b) Take n = 3 in part (a) and deduce the trigonometric identities

sin 360 = 3 cos2 6 sin 6 — sin3 6, cos 360 = cos® 0 — 3 cos Osin% 6 .
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Complex numbers

6.

Prove that every trigonometric sum of the form

n
Su(x) = %ag + 2, (acos kx + by sin kx)
k=1

can be expressed as a sum of complex exponentials,
n
S ( ) =5 ticx
n(x - 2, (G s

k=mn

where ¢, = §(a, — iby) for k =1,2,. .., n. Determine corresponding formulas for ¢_; .

. (a) If m and n are integers, prove that

2r . 0 if m#n,
etne g—imx Jy — .
0 27 if m=n.

(b) Use part (a) to deduce the orthogonality relations for the sine and cosine (m and n are
integers, m? # n?):

2T 2T . . 27
0 SIn nx COS mx dx = Sin nx sin mx dx = COS nx COS mx dx =0 )
0 0

fer . B (en o . . )
Jo SIn” nx dx =J0 cos“nxdx = = i n#0.

. Given a complex number z # 0. Write z = re®®, where 0 = arg(z). Let z; = Re'®, where

R =r'"and o = 0/n, and let ¢ = €37/ where n is a positive integer.
(a) Show that z! = z; that is, z, is an nth root of z.
(b) Show that z has exactly n distinct nth roots,

2 n—1
215 €21 5 €Z1 5405 € TZ7,

and that they are equally spaced on a circle of radius R.
(¢) Determine the three cube roots of i.
(d) Determine the four fourth roots of i.
(e) Determine the four fourth roots of —i.
The definitions of the sine and cosine functions can be extended to the complex plane as
follows:
ez‘z + e—z’z ez’z — e—iz

cosz = ———— sin z = :
2 ? 2i

When z is real, these formulas agree with the ordinary sine and cosine functions. (See Exercise
4.) Use these formulas to deduce the following properties of complex sines and cosines. Here
u, v, and z denote complex numbers, with z = x + iy.

(a) sin (u + v) =sinucosv + cos u sin v.

(b) cos(u + v) = cos ucosv — sin u sin v.

(c) sin?z + cos?z = 1.

(d) cos (iy) = cosh y, sin ({y) = isinh y.

(e) cos z = cos x cosh y — isin x sinh y.

(f) sin z = sin x cosh y + 7 cos x sinh y.



