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Solutions of the Damped Oscillator 
Fokker-Planck Equation 

WILLIAM H. LOUISELL AND JOHN H. MARBURGER 

Absfracf-The quantum  theory of damping is presented  and 
illustrated by means of a  driven  damped harmonic oscillator. The 
theory is formulated in the  coherent  state  representation which 
illustrates  very vividly the  nearly classical nature of the problem. 
In this representation  the  reduced  system  density operator  equation 
becomes a Fokker-Planck equation. Green’s  function solutions 
are found for the  damped oscillator in closed form and as an eigen- 
function  expansion. In addition,  a quantum  regression  theorem  due 
to Lax is derived in  the  coherent  state  representation.  The  theorem 
allows two-time averages  to  be computed from one-time  averages. 

I. INTRODUCTION 

HE QUANTUM THEORY of noisy radiation fields 
has recently received  considerable impetus from 
studies of the statistical properties of laser radia- 

tion.L”-Lsl A host of schemes have been  proposed and 
employed, several with success, to  compute these prop- 
erties. In  this paper, the authors wish t o  outline one such 
scheme in a self-contained presentation and  apply it t o  a 
simple physical system. Although much of the material 
presented here has been  given in work dealing with the 
gas  laser,‘“’-[6’ we feel that  the physical complexity of 
realistic laser  models  obscures the essential logic and 
simplicity of the method of attack.  Thus,  in  the following 
sections the unencumbered theory of boson systems in- 
teracting weakly with large reservoirs in  thermal equilib- 
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rium will be presented. As a concrete, but physicalIy 
simple example of the manner in which the method leads 
to results, the statistical properties of a damped driven 
harmonic oscillator are investigated. 

In addition to clarifying the theory, some  new exact 
expressions for the reduced density  operator  in the P 
repre~entation‘~’ corresponding to  the damped driven 
oscillator are found. A new  proof of a regression theorem 
proved first by  Lax“] is  given, and  its relation to  the 
existence of a reduced conditional probability and  to  the 
master equation for the reduced density operator is shown. 

Sections I1 and III form a review of the coherent 
stat’e representati~n,‘~~*!~’ ‘lo’ and various ordering tech- 
niques‘ll’ useful for conlput’ations involving coherent 
states. In Section IV, we derive a master equation for the 
reduced density operator by  an approach similar to  that 
described by Abragarn,[lz1 but more general. Section V 
includes a description of the model  which is used as an 
example throughout the paper. The master equation is 
cast into the P representation in Section VI using the 
techniques of Appendix A. The resulting form  is that of 
a classical Fokker-Planck equation. In Sect,ion VII, exact 
solutions of the equation for the model are found, and  in 
Section VI11 the corresponding characteristic function 
and the first few moments of the corresponding distribu- 
tion function are also found. Section IX extends our 
results t’o the case of two-time averages, and contains a 
discussion of Lax’s  regression theorem, and  a computation 
of two-time amplitude and  intensity correlations for the 
model. 
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11. THE COHERENT  STATE  REPRESENTATIONr7' ' 191'1131 ' [14' 

A single  mode of a radiation field of frequency w,  in 
a  cavity is described[161 by a Hamiltonian H = Aw,ata 
where a and a* satisfy the commutation relation [a, at] = 1. 
The photon number or n representation is made up of the 
complete orthonormal set of states In) which satisfy the 
eigenvalue equation ata In} = n In), where n = 0, 1 , 2  . . . . 
The coherent or minimum uncertainty state representa- 
tion  has  as basis vectors t.he eigenstates of a with com- 
plex  eigenvalues a 

a la) = a la) 

(a1 a = a* (a] .  
t 

These states  may be expanded in  the n repre~entation[~' 
as 

The factor e-1/2a*n insures normalization 

(a I a)  = 1. (3) 

To pass from one representation to  the other, one uses 
the transformation function given by (2) 

and the completeness relations 

where d 2 a  = d Re (a) .d Im (d), and 1 is the  unit operator. 
This completeness relation for the la) states  may be 
verified explicitly using the expansion ( 2 ) .  Notice that  the 
coherent states  are not orthogonal 

(a I a) = e - l / z ( l a l ~ + l o I ' ) + B n *  
f S(a - P)  

but this does not impair their usefulness. The projection 
operator 

A = la)(a~ = e-"**eaUt la>(al ea*a (6) 

is  used frequently. Some important relations involving 
A are derived in Appendix A. 

The coherent states used in  this paper are examples of 
a general class of overcomplete states studied extensively 
by Glauber, Klauder, and Sudar~han.'~" '131 '[141 We  refer 
the interested reader to  this work for further detail. 

111. ORDERED OPERATOR TECHNIQUES~~'~ * m 1  

The completeness relation (5) leads to  an integral rela- 
tion for the  trace of an operator in the coherent state 
representation 

(7) 

where we have used Tr lu)(vl = (v I u). Since evaluation 
of traces is  important  in  quantum  statistical mechanics, 
(7) provides motivation for studying the matrix elements 
of operators in  the la) representation. This study leads 
naturally t.o the concept of ordered operators. 

Consider an operator  function M(at,  a) of the operators 
at and a which can  be expanded in  a power  series about 
at = a = 0. Using the commutation relations [a, at] = 1 
we may rearrange each term  in  this series so that, all a% 
precede all a's. Thus rearranged, the operat,or M is said 
to  be in normal form 

M(a+, a) = ~ r a ~ ~ : : ) a + r a s  = ~ ( " ) ( a ~ ,  a ) .  (8) 

Using t8he  property (1) of t.he coherent states wt; see 
from (8) that 

(a1 M(a+, a) la} = l@y**, a).  (9) 

Here, the  bar over a'"' indicates that M is  no longer 
an operator. This computation shows that  the problem 
of finding matrix elements in  the coherent state representa- 
tion is equivalent to  that of finding the normal form of an 
operator function. In fact, the coefficients M,, in (8) 
uniquely define the function 

L@(n) (a*,  a) = z:rsM::)a*raS. 

To pass in  the opposite direction from ~ ! ( ~ ) ( a * ,  a) to 
M(a+, a) ,  it is  useful to define a norm1 ordering operator 
32 with the property 

%[AP)(a*, 0.11 = W n ) ( a t ,  a) = M(a  t , a) .  (10) 

This operator replaces a* and a by at and a in  the power 
series  expansion of @(n)(a*,  a) after all a's have been 
placed t o  the right of all a*'s. We may  think of ~ @ ( ~ ) ( a * ,  a) 
as describing a classical system which  is equivalent to 
the  quantum system described by M(at, a) .  For example, 
the vector potential describing one  mode of the radiation 
field  is 

A(r, t )  = [ a e i ( k ' r - w c t )  + ate - i (k . r -w , t )  1 
where a and a* are operators. The diagonal matrix element 
in  the a representation is 

(a1 A(r, t) la) = [aei'k - r - w , t )  + a*e- i (k . r -o , t )  1 
which  is exactly the same form as  the classical vector 
potential where a and a* are  the complex  calssical  am- 
plitudes of the field  mode. In contrast, using n representa- 
tion we have 

(nl A(r, t) In) = [d~ei 'k ' ' - "" t ' (n  I n - 1) 

+ d n i  e - i ( k*r -wc t ) (n  I n + I)]. 
The classical nature at  high field strengths is  now obscured. 
When many photons are involved, one gains greater 
physical insight by using the a representation; whereas, for 
only a few photons (less than  three or four), it is better 
to  use the n representation. 

Another useful formula for the trace is  based upon a 
different operator ordering. If all a's are commuted to 
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the left of all UT'S in  the power  series  expansion of M(at ,  a), 
we find M in antinormal form 

" U t ,  a) = Z,,M;:)a~ais = dl(" ' (a  , a).  (11) 

M(at ,  a) = ZA!!::) 

t 

This  may be rewritten using the completeness relation as 

(12) 

where 
JPaya*,  a) = 2rsMlj:'aTcY*8. (1 3) 

Again  using Tr lu)(vl = (u j v), we find 

Tr M ( a t ,  a) = - ~ @ ( ~ ) ( a * ,  a ) .  

This is to be  compared to  (7)  which we can now write as 

I d: (1 4) 

s d: (15) Tr M ( U t ,  a) = - 11P(a*,  a) 

using (9). Thus, the  trace of M may be computed as an 
integral if either its normal or its antinormal form  is  known. 
An operator (3 analogous t o  32 may be defined through 
an equation similar to  (10) 

@[M'"'(a*, a)] = M ( ' ) ( a  , U )  = M ( a  , a) .  (16) t t 

If two operators M(aT,  a) a'nd N(at, a)  are  cast  into 
opposite orders, the following result for t'he trace of their 
product is obtained 

and reservoir by V .  The  total Hamiltonian is, therefore, 

H T  = II + R + V .  (19) 

The  statistical properties of the system and reservoir 
are described by a density ~perator"~'  p which  satisfies 
the equation of motion 

i h P  = [H + R  + V ,  p ] .  

In general, however, we are only interested in  the statist,i- 
cal properties of functions of the system operators, M(t ) .  
The mean value of such an operat,or is given by 

a 
at (20) 

(n/ l ( t ) )  = Tr, .s M p ( t )  = Trs [ M  Tr, p ( l ) ]  (21) 

where we trace over both the system and reservoir vari- 
ables. This equation shows that only the reduced density 
opemtor defined  by 

S(t)  = Trs p ( t )  (22) 

is  needed to compute {M(i)). We therefore would like 
to  remove the unneeded information from (20) to  obtain 
an equation for x(t). To find this, it is convenient to  trans- 
form (20) t o  the interaction picture by means of the 
transformation 

p( t )  = (If I-R) t i</*> (N+R) t 
X ( @  (23) 

Note that H and R commute. Then (2Q) yields 

ax 
at iF, ~ = [V(L), x] (24) 

= / Zrst.LL~~:~)N~~)ar+lIa*SLL (17) and X is the full density operator for system and reservoir 
in the interaction picture. Tracing both sides of (23) over 
the reservoir only, and using Tr AB = Tr BA, we have &r(a)  (a*, a)lv (n) (a* 

7 4 
by (22) 

where Tr  AB = Tr BA are used. Casting the a's and a"s 
in  the opposite order we find in  the same way 

Tr M(at ,  a)N(at ,  a) = 1-2 d2 iI?!(")(a*, a ) ~ ~ ( ~ ) ( c r * ,  a ) .  (18) 

The techniques developed in  this section will be applied 
in subsequent sections t o  the solution of the density 
operator equation for damped systems. We remark that 
the function ll?l(*)(a*, p)  is  equaI (up to  a  factor) to 
Glauber's R representation'" of M(at ,  a ) ,  and that 
~ ! ( ~ ) ( a * ,   a )  is equal to  his P representation of ill. 

7r 

IV. MASTER EQUATION FOR REDUCED DENSITY 
OPERATOR 

is the reduced density operator in  the interaction picture. 
Integrating  both sides of (24) from t = - ~0 when the 

interaction was turned on, we obtain 

so t,hat 

In order to  treat  attenuation  quantum mechanically, Inserting this in the integrand in (25),  we obtain 
consider a system whose Hamiltonian in the absence of 
damping is H to be coupled  weakly to a reservoir con- ~ ( t )  = X (  - -) + 7 1 [V( t ' ) ,  x( - ->I dt' + (&)z 

sisting of a  very large number of lossless systems in  thermal 
equilibrium at a  temperature T. The reservoir is described 
by a Hamiltonian R, and the coupling between the system 

1 t '  

zk -p 

(30) 
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If we  proceeded to  iterate again in  this fashion, we would 
obtain X(t) in a power  series in V which  is just  perturba- 
tion  theory.  Unforturnately,  perturbation  theory is in- 
capable of yielding exponential decay, and we must resort 
to another approximation scheme. Differentiating both 
sides of (30) with respect to t ,  we find 

whose trace over reservoir variables, using (27), is 

Here, we have used 

Trn [v(t’), x( -  a311 = 0 

which  follows from the factorization of x at t = 
when the interaction V is assumed turned off 

X ( -  a) = 4- a)fo(R) 

and fo(R) is a Boltzmann distribution 

where p = l / k T .  In (33), f,(E) is diagonal but we assume 
V ( t )  has no diagonal elements in  the R representation so 
that  the  trace vanishes. Aside from this assumption which 
is not  a  real restriction, (32) is exact. 

To continue, we assume that  the damped system is 
Markofian which means that  its  future behavior is deter- 
mined only by  the present and  not by  the past. Physically 
this means that exposure to  the reservoir blanks  out the 
past memory of the system. Mathematically we simply 
replace ~ ( t ’ )  on  the right of (32) by ~ ( t ) .  In addition, 
we assume that X ( t )  has  the form 

x(0  = d t ) f O ( @  + Ax (34) 
where Ax is at  most of order V since if V = 0, x( t )  = 
s(t)f,(R). Our second approximation will  now  be in ignor- 
ing all  quantities of order higher than second in V.  With 
these assumptions (32) reduces t o  

which is our master equation for s.‘”’ 
If, in addition to  the reservoir, there is another interac- 

tion, U which depends only on the system operators, 
we assume that  the reduced density operator in  the in- 
teraction  picture satisfies 

at = (&)[V(t), s] 

where 
u(t) = e ( i / t r ) H t  ( i / * ) H t  Ue- (37) 

That is, U(t)  is treated as though it were not influenced 
directly by  the reservoir. 

The generalization to many coupled systems, each with 
its own reservoir, is  obvious. 

V. MASTER EQUATION FOR THE DAMPED DRIVEN 
OSCILLATOR 

A single  mode of the radiation field of frequency w, 
coupled  weakly t o  a reservoir of oscillators at  temperature 
T ,  and driven by  a classical  source has the Hamiltonian 

H , = H + R + V + U  

H = hw,a’a 

R = ZAwibIbi 

V = zh(KibjU + KSb,’.> t 

u = tzb(t)a+ + p*(t)a]. 

The reduced density operator by (37) satisfies 

- = - [U(tj ,  s] as 1 
at ih 

+ - Y [zasa - a as - sa’a] 

+ yfii[atsa + asat - a as - saa 1. (42) 

The first two terms are pumping terms. The y/2 term 
is a damping term which represents loss from the system; 
y is  defined in Appendix B. The  term is a diffusion term 
and represents the diffusion of thermal noise from the 
reservoir difbsing  into  the system. This identification 
of terms will  become  clear in  the next section. From 
Appendix E we have 

t t  
2 

t t 

1 
exp (hw,/~T) - 1 

f i =  

which is the mean number of thermal photons (or phonons) 
in the reservoir. As T --+ 0, f i  vanishes and  there is no 
diffusion. 

There  are  many techniques‘lg’ available to  solve equa- 
tions such as (42), which result from  quadratic Hamilton- 
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ians. In  the following  sections, we use the harmonic 
oscillator model  described above t o  illustrate  still  another 
technique which is useful for more general problems. 
Louisell,  working with  Lax,'41  has applied this method 
with success to  the problem of noise in gas lasers. 

VI. FOKKER-PLANCK EQUATION FOR S'"' (a*, 01, t )  

Glauber"' has emphasized the convenience of working 
with the density operator in  the P representation. In 
particular, (18) gives for the mean of a system operator 
"at, a)  

( M )  = Tr S M  = - ~ ( ~ ) ( a * ,  a)~U(~)(a* ,  a).  s d: 
To find an equation for ~ ( ~ ) ( a * ,  a) it, is only necessary 

to  use (12) on both sides of the master equation (35) or 
(36), and  then apply the results of Appendix A. The 
procedure is best understood by working out a specific 
case.  We  do this for the damped driven osdlator (42). 

From the relation 
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s(a , a, t) = a'"' (a*, a,  t) A - t s d'a 
7r 

and  the normalization condition Tr s = 1, we  find 

Tr, X(a, at ,  t )  = Tr, s(a, at ,  t )  

(43) 

SO that .3'a'(a, a*, t )  plays the role of a classical probability 
density. If we put (43) into (42), we have 

+ [2uAat - atah - Aatu] 2 

+ yii[atAa + aAat - a a h  - liaa'] . t } (45) 

We may use the results of dppendix A t o  show that (45) 
becomes 

We  next integrate all the first derivative terms on the 
right  by  parts once, and the second derivat'ive term by 
parts twice. The integrated  parts vanish since g C a )  must 
be integrable by (44) so that 3'"' must vanish as a and 
a* -+ a. We therefore obtain for (46) 

Therefore the associated antinormal reduced density func- 
tion satisfies the Fokker-Planck equation 

There are many discussions of Fokker-Planck equations 
in  the literature,  and the reader should consult, for 
example, LaxLz0' for details. We remark that  the terms 
in parenthesis play the role of components of a drift 
vector, and yfi that of digusion constant. Clearly a similar 
equation can be written down for  any  arbitrary system. 
However, only for systems with quadratic HamilDonians, 
such as those in our example,  will the Fokker-Planck 
equation include at  most second derivatives. 

VII. SOLUTIONS OF THE FOKKER-PLANCK EQUATION FOR 
DAMPED DRIVEN OSCILLATOR 

A .  General Xolution  for Hamonic Driving  Function 
When the driving term is sinusoidal and at  the cavity 

frequency 

the Fokker-Planck equation (48) reduces to  

E Ls'"' 

which  is separable in  the time. With 

~ ( ~ ' ( a ,  a*, t )  = e-ltQ(a, a*> (51) 

this becomes 

LQ(a, a*) = --x&(a, a*). ( W  

The operator L is not self-adjoint'21' but we may make 
it so by  taking 

&(a, .*) = e - ( z 2 + f P ' / 2  N x ,  Y) (53) 
where 

a + 7 pa = 4; (x + i y )  
i2 

(54) 
a* - - 2i 

Y 
po* = 4; (x - iy). 
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This  substitution yields From the properties of the self-adjoint equation'211 
for N,,,,(x, y) [see (55)], we know that  the eigenfunctions 

d 2 N  
ax2 ay 
a+ -$ + [ e  - 22 - y z ] ~ ( z ,  y) = o (55) are complete 

where 2- - e  H,(x)H,(z') = 6 ( ~  - 2'). (66) 1 - 1 / 2 ( 2 2 + 2 ' * )  

nr=o 2"n! d7r 
4 
Y 

e = - X + 2 .  (56) We  may use this completeness relation to obtain  a solu- 
tion for the Fokker-Planck equation such that  at t = 0, 

This is nothing but  the Schrodinger equation for a two- x $1 and = YI, or = and = This solution, 
dimensional isotropic harmonic oscillator. Furthermore, the conditional probability, is given by 

x = f a, which are  the  same  boundary  ~onditions for It is  easily  seen from (67), (60), and (61) that  at t = 0 
the Schrodinger equation. The CorresPOnding eigenfunc- the aforementioned conditional probability reduces to 
tions and eigenvalues are well known to be 

4 
Y 

P ( a ,  a*, 0 I a', a'*, 0) 
E = - x + 2 = (2% + 1) + (2% + 1) = S(a - a') 8(a* - a*') = B(x - x!) 6(y - y') 

(nz, n, = 0 ,  1, 2 ,  a )  (58) provided 

N n z , w v ( x ,  Y) = Kn=sn,e 
- 1 / 2 ( r ? + v ~ )  l J m z ( x ) H n v ( Y )  (59) 1 Kn,,,, = 

where the H,(f) are  the hermite polynomials, and the 4 2 n z n ,  ! 2"un, ! 4; 
K,,,,, are normalizing constants. The eigenfunctions of 
(50) are therefore 

-$:Lv(x, y, t )  = Kn,,,e- e fJn=(4Hnu(Y).  (60) a*, t )  

The solution for an arbitrary  initial  distribution 
P ( a ' ,  a'*, 0) is 

-y/2(n.+n,)t - ( z * + u 2 )  

The integral (57) in  terms of the variables x and y 
becomes = s  S(')(a, a*, t I a',  a'*, O)S(a)(a', a'*, 0) -- (68) d2a' 

7r 

1.L -(a) a 
s?Lz%(X, Y, ' I f i  d x  dy = 1. 

(61) B .  General  Solution for Arbitrary  Driving  Function 

Since When p ( t )  is arbitrary,  the technique mentioned does 
not work  since the equation is not separable in  the time, l: e-"'H,(x)H,(x) dx = 6,,,2"n! di (62) and we resort to  another technique. We  would like to 
find a solution of (48) subject to  the initial conditions 
a = a' and a* = a'* at t = 0. Note that we may represent 
the p function as 

and 
Ho(x) = 1 (63) 

lim e e - f ( c ? - a ' ) ( a * - a ' * )  - 
we have  by (60) to  (63) - 6(a - a') 6(a* - a'*) 

e-+- 

f i K , n v  e-r/z(nz+nu) t [: e-"'H,,(x) dx e-"Hn,(y) dy such that 
n- -m 

= fiKo0 BnZ0 = 1.  (64) 1 6(a - a') 6(a* - a'*) -E d2 li- = 1. 

We must therefore  let We therefore are led to a  trial solution of the form 

so that for n, = nu = 0, (60)  becomes 
where 

.$:)(x, y, t )  = ; e  1 - ( z ~ + s ~ )  

for the ground-state eigenfunction. Since it is the only and 

nondamped eigenfunction, this represents the steady- 
state solution to our Fokker-Planck equation. ~ ( 0 )  = a'; s*(O) = a'*, t(0) = ; ; ~(0 )  = e .  (71) 

1 
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When we put (69) into (48), and  equate the coefficients 
of equal powers of a and a*, we obtain the coupled set of 
equations 

1 dv 1 d l  
v dt  b dt 
-- = --- 

after minor algebraic simplifications. The solutions are 

l ( t )  = 

d t )  = 

v(t) = 

where 

w(t) = 

Accordingly, the conditional probability distribution func- 
tion is 

s(a)(a!, ff*t 1 a',  a'*, 0) 

Clearly, as t 3 0, w(t) + 0, and we have  a 6 function as 
required, we may use this in (68) t o  obtain the solution 
for an arbitrary  initial dist,ribution. In the special  case 
of a sinusoidal driving term given by (49), w(t)  becomes 

eiwctw(t)  = -- p o ( l  - e- (76) 2i 
Y 

in which  case  (67) and (75)  become identical. 

VIII. THE CHARACTERISTIC FuNcTIoPU"~'] 

The characteristic function is  defined by 

c ( ~ ) ( ~ V ,  t s * ,  t)  = ~ r ~ , ,  p(t)eiEn*atei'na 

= Tr, at, t)eiE'?*aieiEqa (77) 

where we have used (22). From the characteristic function 
we may calculate all moments of the form 

, I - m  

If we use (17), we see that 

C(d(Erl, f V * ,  t)  = 1 - d2a & ( a ) ( a ,  a*) t ) p n a + ? * a * )  (79) 
7i- 

so that C'"' and 8'"' are Fourier transform pairs. Ac- 
cordingly, we easily  see that 
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~ ' ( a ,  a*, t )  = j e - .  C (Es, Ev* , t)tz 2 (80) 

so that if  we  knom- the characteristic function, we may 
obtain the associated function for the reduced density 
operator,[231 and 

* E ( n a + n * n * )  -f(a) 

sya, ai, t )  = @ { S y Y ,  a*, t ) ) .  (81) 

Thus, the characteristic function uniquely determines the 
density operator and vice versa. 

We have obtained the reduced density operator  in the 
interaction picture. In the interaction picture (77)  becomes 

C'"' ( ts  , ET* , t )  
= Tr, s(a, a t ,  t)  exp (itr*a'ei"") exp (ilVue-'wc') 

= / SCa)(a, a*, t)  exp it(q*a*eiwct + qae-iwct) ;. (82) 

We may use (68) and (73) to  obtain C'a'([q, (r*, t ) .  
We may easily obtain the following 

d2ff 

(a(t)j  = e - ' i w c + s / 2 ) t  (a(0)) + w(t)  

(a+(t>> = e (a'(ojj + w*(t> (83) + ( i w c - - y / 2 ) i  

(a.'(t)a(t)) = fi(1 - e-") + e-yc(a'(o)a(o>) + lw(t) 1' 
+ W ( t ) e ' i M " Y / 2 ' t  (a'(o)) + W " ( t ) e - ( i w c + 7 / 2 ) t  

(a@)>. 

These give the mean value of the field and the mean 
number of quanta  in  the field at time t. In  the steady 
state (yt  >> I), these means reduce to 

( 4 0 )  = w(C 

(a'(t)) = w*(t) (84) 

(a'(t)a(t)j = f i  + ]w(t)IZ.  

All  previous information in  the field is lost, leaving only 
the driving terms, whereas the mean number of field 
quanta comes into equilibrium with the reservoir plus 
a driving term contribution. 

IX.  TWO-TIME AVERAGES 
The power spectrum and the amplitude spectrum are 

derived from the Fourier transforms of the two-time cor- 
relation functions (b+(t)b(O)) and (b+(O)b+(t)b(t)b(O)), re- 
spectively. To obtain these two-time averages we must 
invoke a theorem due to  Lax"'  which says that under 
certain conditions (Markoffian behavior is  sufficient), 
one- and two-time averages obey the same equation of 
motion. In  Part A of this section we show that this result 
is always true, but  that only under the condit'ions stated 
by Lax are  the equations of motion the macroscopic  ones. 
Part B includes computation of the amplitude and in- 
tensity correlation functions. 

A .  An Exact Regression  Theorem 
The time development of the exact operator p is given 

by (20) which has  the formal solution 
p ( t )  = e - < u * ) ~ r ~ t  ( u * ) r z T t  

P(Ok (85) 
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when H T  is time independent in  the Schrodinger picture. 
If H ,  includes time dependent driving terms, p(t)  may 
still be written as 

p(t) = U ( t ,  O)p(O)U(O,  t )  = U ( t ,  t ’)p(t’)U(t’, t). (86) 

Here, U(t ,  t’) satisfies 

U ( t ,  tj = 1 

U ( t ,  t’) = U-yt’, t )  

U ( t ,  t ” )  = U ( t ,  t’)U(t’, t”) 
and reduces to for HT time independent. In  the 
following  discussion, a stands for the set of operators 
fai 1 required t o  describe the system in question. 

Equation (12) may  be used to rewrite (86) as 

P h i ,  a) = 1 - Ut,&t,  u)pt:’(a*, a) la>(aI Ut&+, a) d2a 
7r 

where we have changed notation in  an obvious way for 
compactness. This equation has  the following diagonal 
matrix element in  the coherent state representation 

pt”’(p*, 0) = 1 - ut;!(@*, a)Ot:!(a*, P)pt:’(a*, a ) .  
d2a - 

T 

Suppose we convert both sides of this equation to  an 
operator function of b’ and b only using (10). Then if 

W e t @ + ,  b ,  a*, a) = x,[Ut:!(p*, a>Bt”(a*, p ) ]  
we have 

p,(b+, b) = 1 U c t , ( b + ,  b ,  a*, a)ptt’(a*, a).  

Then  the P representative of this equation, obtained 
from the antinormal form of ‘0 as in (11) and (13), plays 
the role of a conditional probability for pi”’ 

pj“’(P*, P) = / T U t t @ * ,  P I a*, a)p?’(a*, a ) .  (88) 

The two-time average (M(t)N(t’))  of two operators in 

d2ff --(a) 

the Heisenberg picture may be written as 

fW(t)N(t’) = Tr poMtNt j  

= Tr poUo,MoUt ,~NoU,~o  (89) 

= Tr U t  ,Nopt I U t  I ,M0 
where we have used the cyclic property of the trace, 
(86) and (87), and 

M ,  = U o t n ~ o U t , .  

The first four factors in (89) may be treated exactly as 
(86)  was above, with p,, replaced by Nopt ,. These factors 
have  the P representative 

(Ut , .Nopt ,U, , t~o)(Q’(P*,  P )  

- - / $Q:;!(/3*, p 1 a*, a)(NOPt’)(ya*, a).  

Therefore, using (17) for  the trace of a product, we find 

-(G)-(a)(ff*, a)lPP(P”, P) .  (90) 

The single-time average M, is obtained by  setting N = 1 
in (90) 

-(@*, p I a*, a)ptf’(a*, a),>nE”’(P*, P ) .  (91) 

That Q:;! contains the essential time dependence in both 
cases  is an expression of our exact regression theorem con- 
nect,ing  one- and two-time averages. 

Now suppose that of the  set of operators {ai ] rep- 
resented by a in the preceding paragraph, the first N’s 
are system operators, denoted collectively by a,, and the 
remaining are reservoir operators denoted by aR. With 
this  notation, we trace (88) over  reservoir variables in an 
attempt to  find a conditional probability for the reduced 
density operator S(t) defined in (22) 

It is clearly impossible even t o  speak of a conditional 
probability in  this case  unless p:‘) factors as 

*a:;!@*, p I a*, a)Rt:’(aX, ax) (95) 

is the Schrodinger picture conditional probability cor- 
responding to that  in  the interaction picture introduced 
in Section VII. 

In general, of course, pt does not factor as  in (93). In 
Section IV, however, we found that  the nonfactoring 
part Ax of the density  operator played no role to  second 
order in  the weak  coupling to  the reservoir. Consequently, 
assuming pt factors are consistent with our previous 
approximation, led to  the master equations (35) and (36). 

A procedure identical t o  that which  led from (88) t o  
(94) gives for (90) 

*(NoSt*)‘“’(4,  as)l@?’(PT, Pa)  (96) 

if M and N depend only on system operators. This equa- 
tion was first derived by Lax in a  rather different form. 
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B. Two-Time Aver-ages for the Damped Driven Oscillato? X. DISCUSSION 
In Section 1-11, we found explicit  expressions for the 

interaction picture form S t * ,  of the conditional probability 
S t t j  employed above. Equation (96) remains valid if 
all operators are transformed to the interaction  picture 

. ! S t  r )  ( 4 ) ( c y , * ,  a,)lGln) (p:p,). (97) 
__- 

Here, fl, I and at I are  in t'he interaction picture. 
Using this formula and (75) for the conditional prob- 

ability, we may compute the amplitude correlation func- 
tion (b+(t)b(O)) without difficulty as 

The p integrals are Gaussian in  this case and can be 
performed explicitly. Omitting details, we find 

It has been the aim of this  paper t o  present in nearly 
self-contained form a systema,tic method for computing 
the most important  statistical properties of a system of 
bosons interacting weakly with  a reservoir in  thermal 
equilibrium. We have also  shown in detail the results to  
which it leads for  the simple but instructive case of the 
damped driven harmonic oscillator, but  the method is by 
no means restricted to  this case. The important features 
of t,his method are: 1) the reduction of the density  operator 
master equation to  a  part'ial differential equation which 
may  in more complicated  cases be solved  wit8h numerical 
methods; 2) use of the conditional probability which 
permits arbitrary specification of the initial reduced 
density matrix as .well as computation of two-time av- 
erages; and 3) economy of basic assumptions. Only two 
approximations are absolutely necessary: that  the memory 
of the system is destroyed by  its  interaction with the 
reservoir; and that this  interaction is  sufficiently  weak 
that  its effects  need  only  be  considered to  second order 
in  perturbation  theory. 

coefficient'  is proportiona'l t o  w*(t). 
Before we can compute the intensity correlation func- 

tion (bt(0)bt( t )b( t )b(O))  we must find a formula analogous By (1) %re see immediately that 
to (96) or (97) for the two-time average 

a h  = ah 

Aa = a*A. 
t 

Next, we have 
This now has the form of (89) with N o p t ,  replaced by 
Nopt .Lo, and all the arguments given above are valid here. a A = (& + a*)A. 
Thus, going immediately to  the interaction picture, we 
have Proof: We have by (102) 

t 

In particular, the intensity correlation function is Also, 

(b,lb:b,b,) = / d"Lu J' d"P sl;' 
a a 

= e-aa* " (e*"*A) = (" + a*)h Q.E.D. 
d a  d f f  

ha  = (& -I- a)*. 

e@*, P 1 a*, &da)(a*, a)a*P*P. (100) This is just the adjoint of (104). Next, 

Again the /3 integrals may be  performed  explicitly  using 
(75) with the result 
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Similarly, Also,  we have 

357 

Aaat = ( a* ~ aa* + 1 + aa*)A. d 
(10% 

(bib:), E TrR bjb:fO(R) = (1 + ‘6;) 8 j k .  (118) 

It then follows  easily that 
This follows from aut = uta + 1 and (107). Also, (~(t)~(t ’)) ,  = o = (~~( t ) c t ’ ( t ’>) ,  

aha = aa*A t 
(109) ( ~ ( t ) ~ + ( p ) ) ,  = xi 1 K i 1 2  (1 + f i j ) e ‘ ( w c - w i ) ( t - t ‘ )  (119) 

by (103)  while 

a Aa = 1 + aa* + a -  + a* ~ 

d d d2 A. (110) Therefore, I in (11 1) becomes 
d a  

Proof: By (105) and (104) 

a*Aa = at(& + a ) A  = (& + a)atA 

II d f f *  + Z z I  
(G’(~)G(P)), = zi I K ~ ! ~  f i i e - i ( w  

c - w i ) ( t - t ’ )  

t 

I = -2,. l K i 1 2  + f i l ) e - i ( w i - w c ) ( t - t ’ )  Lm a as(t) 
+ f i i e i ( w , - w c ) ( t - t ’ )  aats(t)f dt’.  (120) 

We assume that  the loss oscillators are closely spaced 

= (& + a)(: + a*)h Q.E.D. in frequency with  a  density g(wi). The above sum can 
then be  replaced by an integral 

APPENDIX B Zi ---f dwig(wi). 

In (39), we have  to evaluate 
1 P t  

If in addition, we let t - t’ = i?r, (120)  becomes 

e-BR where Pl /x  is the Cauchy principle part of l/x. If we 
fo(R) = ~ TI-, e-OR neglect the principle part which  gives a small imaginary 

(113) term which  causes a small frequency shift, (121) reduces to 
= n (1 - e-B*wi O * w i b i + b i  )e- 

i I = -- (1 + c)a+as - 7 fiaa+s Y 
2 2 (123) To begin,  we note that 

since 
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inear Absorption of ]ti Bat: Saturatio 
Electronic  Transitions in ecanlles wit 

High Intensity Laser 
C. R. GIULIANO AND L. D. HESS 

Abtruct-A review of spectroscopic properties of complex 
molecules is  presented  and  used  to  show  that a  simple two-level 
scheme is inadequate  to  describe  the optical bleaching of dye mole- 
cules. Experimental  data  are  reported  for  the  transmission of intense 
ruby  laser radiation by several  types of dyes. Rate equation analyses 
are  carried  out using steady-state solutions and  iterative computer 
solutions; calculated  bleaching curves  are compared with our  data 
for cryptocyanine. On these  bases, we show  that, in  general, the 
optical bleaching  process  involves the removal of ground-state 
molecules to  other  states having smaller absorption cross sections 
at the exciting frequency, and  that recovery of absorption at  this 
frequency is characterized  by a complex relaxation  mechanism. 

I. IKTRODUCTION 
NONLINEAR ABSORBER of light has  the unique 
property that  its optical absorption can be altered 
by changes in t’he intensity oi radiation incident 
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upon it. Several different types of organic  molecules 
undergo optical bleaching[l’-ll”’ when subjected to  high 
intensity radiation and  are useful as reversible (passive) 
&-switchesr111 for lasers.‘*21-L261 Simultaneous Q-switch- 
ing and mode-locking can be achieved  also  when certain 
dye solutions are incorporated in  a laser 
Saturation of absorption is an essential feature required 
of the dye in both applications, i.e., the transmission of 
the dye must be  power dependent in such a way that  it 
provides less attenuation for a high-level optical sigml 
than for a low-level  signal. 

Several authors  have discussed the propagation of 
monochromatic radiation in saturable  media,L29’--L321 and 
the evolution of a giant p ~ l s e ‘ ~ ~ ’ - [ ~ ~ ’  produced with pas- 
sive &-switches, but relatively little  attention  has been 
devoted to  the molecular  processes involved in optical 
bleaching. Mechanistic considerations thus far havecentered 
mainly around the possibility of narrow spectral hole-burn- 

The energy level structure of saturable absorbers used  as 
ing of molecular absorption bands. 1 8 l - l l o l  v 1201 * 1231 e 1381 I 1391 


