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A Multidimensional Version 
of Rolle's Theorem 

Massimo Furi and Mario Martelli 

In this paper we obtain for functions f :  Rn + R P  a version of Rolle's Theorem 
which we hope the readers will find useful and interesting for the following 
reasons. Three fundamental results from Calculus: namely Rolle's Theorem, the 
Mean Value Theorem and the Cauchy Generalized Mean Value Theorem can be 
easily derived from it. The version has intuitive geometrical applications and the 
proof is very simple. 

Teachers may find it appropriate to incorporate our result in a course on 
Multivariable Calculus, since it provides an example of how certain one-dimen- 
sional theorems can be rephrased in higher dimensional spaces, and it shows that 
by expanding our mathematical horizon we frequently gain in organization and 
unity. Professional mathematicians are all familiar with these facts, but students 
will surely derive from them a motivation to learn more. 

The basic idea of our result is to assume a certain behavior of f on the 
boundary dR of a n-dimensional region R (in the real line this behavior reduces to 
the familiar condition f(a)  = f(b)) to obtain information on the derivative of f at 
an interior point of R. Of particular relevance to the result is the Mean Value 
Theorem of Sanderson [lo] for a function v: [a ,  b] -+ RP. We extend his theorem 
to functions of several variables. 

The paper ends with an additional, more general version of Rolle's Theorem, 
and with an open problem and a conjecture which will hopefully stimulate the 
reader's mathematical curiosity. 

We now list the terminology used and the results needed in the sequel. 
O(m X n) stands for the zero matrix with m rows and n columns. x . y denotes the 
Euclidean inner product between x and y and the norm of x is llxll = G.We 
repeatedly make reference to the following sets: 

D ( x ~ ,r )  = {X E Rn:  I I x  - xOllI r}, B(xO, r )  = {X E Rn:  llx - xoll < r}, 

and S(xo, r )  = {x E Rn:  Ilx - xoll = r} = dD(xo, r ) .  

The two propositions below play a key role in the proof of our multi-dimen- 
sional version of Rolle's Theorem. 

Propostion 1. Let f :  D(xo, r )  c Rn + R and let c E B(xo, r )  be an extremum point 
off. Assume that f is differentiable at c. Then f'(c) = O(1 X n). 

Proposition 2. Let f :  D(xo, r )  c Rn + R be continuous. Then the image off is a 
closed and bounded interval [m, MI. 



We point out that the proof of Rolle's Theorem in R is based on the one-dimen-
sional version of the two propositions. 

Results. The following simple example shows that a straightforward reformulation 
of Rolle's Theorem in Rn, n 2 2, fails. 

Example I. Let f :  R~ + R~ be defined by 

The function f is continuous on D(0, I), is differentiable on B(0,l) and f(x) = 0 
for every x E S(0,l). However, fl(x) Z O(2 X 2) for all x E B(0,l). 

We are now ready to state and prove our main result. 

Theorem 1. Let f :  D(xo,r )  c Rn + RP be continuous on D(xo, r )  and differen-
tiable on B(xo, r). Assume that there exists a vector v E RP such that 

i) v is orthogonal to f (x) for every x E S(xO,r )  . 
Then there exists a vector c E B(xo, r )  such that v .ff(c)u = 0 for every u E Rn. 

Proof: Let k :  RP + R be defined by k(x) = v . x. Set g(x) = k( f(x)). By Proposi-
tion 2 the image of g is a bounded and closed interval [m, MI. Assumption i) 
implies that g is 0 on S(xo,r). Hence we may assume, without loss of generality, 
that g reaches its maximum value, M, at a point c E B(xo, r), namely M = g(c). 
By Proposition 1 gf(c)= O(1 X n), i.e. v .f '(c)u = 0for every u E Rn. QED. 

Remark I. Assumption i) can be replaced by the equivalent statement 

"ii) v .f (x) is constant on S(xo, r )"; 

and the conclusion of the theorem can be expressed in the equivalent but 
geometrically more intuitive way 

af af af 
"V is orthogonal to the vectors -(c) , -(c) ,. . . , -(c) " 

ax, ax2 ax, 

Remark 2. D(xo, r )  can be replaced by the closure of any open, bounded and 
connected set R of Rn. 

Rolle's Theorem, the Mean Value Theorem and the Cauchy Generalized Mean 
Value Theorem are easily derived from Theorem 1. 

Corollary 1 (Cauchy). Let a < b and f ,  g :  [a ,  bl + R be continuous on [a ,  b] and 
differentiable on (a, b). Then there exists c E (a,  b) such that 

Proof: If f (a)  = f(b)  and g(a) = g(b) there is nothing to prove. 
Assume [f(b)  - f(a)I2 + [g(b) - g(a)I2 > 0.Define S: [a ,  b] + R~ by S(t) = 

(g(t), f(t)). Let v = (f(b) - f(a), g(a) - g(b)). Then v T(a) = v T(b) = 

f(b)g(a) - f(a)g(b>. Hence, according to Theorem 1 (see Remark 11, there is a 
point c E (a,  b) such that v . Tf(c)t = 0 for every t E R. With t # 0we obtain 
[f(b) - f(a)lgf(c) = ft(c)[g(b) - g(a)l. 
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Setting g(x) = x gives the Mean Value Theorem. If, in addition f(b) = f(a), 
then we have Rolle's Theorem. QED 

The next Corollary is the Mean Value Theorem of Sanderson [lo] mentioned in 
the Introduction. 

Corollary 2. Let a < b and v: [a ,  b] -+ R P  be k times differentiable. Assume that 
v(a), v(b) and the k - 1derivatives of v a t  a are orthogonal to a non-zero vector v,. 
Then, for some c E (a, b), vfk)(c)is orthogonal to vo. 

Proof: From Theorem 1we derive the existence of a point c, E (a, b) such that vo 
is orthogonal to vf(cl).The theorem can now be applied to v' in the interval [a ,  c,] 
to yield a point c, < c, such that v, is orthogonal to v1'(c2).This procedure can be 
repeated k - 1times to obtain c = c, < c,-I such that v, . v(,)(c) = 0. QED 

A recent result of Evard and Jafari [4] (see also [71) follows from Theorem 1. 

Corollary 3. Let C be the field of complex numbers and f :  C -+ C be a holomorphic 
function. Assume that there are points a # b such that f(a) = f(b). Then there exist 
z,, Z, in the open line segmentjoining a with b such that Re(f '(2,)) = Im(f '(2,)) = 

0. 

Proof: Let f(z) = f (x  + iy) = u(x, y) + iv(x, y) and p E R,, p = (p l ,  p 2 )  = 

(Re(a), Im(a)), q E R,, q = (ql,  q,) = (Re(b), Im(b)). Define g(t)  = (u(q + t(p -
q)), v(q + t(p - q))), t E [0, 11. Notice that g(0) = g(1). According to Theorem 1, 
for every x E R,, x + 0, there exists to E (0 , l )  such that x .gf(to)t= 0, for every 
t E R.Let t = 1and choose the vector x, = ( p l  - q,, p, - q,). Then 

Since f is holomorphic, its real and imaginary part satisfy the Cauchy-Riemann 
equations (see [I]), i.e. du/dx = dv/dy and du/dy = -dv/dx. Hence 

This implies du/dx(g(t,)) = Re(ft(zl)) = 0, where 2, = q + t,(p - q). 
To obtain the other equality use the vector x, = (q, - p,, p, - q,). QED 

Theorem 1 can be given a slightly more general form. 

Theorem 2. (Second version of Rolle's Theorem in Rn). Let f :  D(x,, r )  c Rn + RP 
be continuous on D(xo,r )  and differentiable on B(xo, r). Let v E RP, zOE B(xO,r )  
be such that 

ii) v (f (x) - f (2,)) does not change sign on S(xo,r ) . 
Then there exists a vector c E B(x,, r )  such that v fl(c)u = 0 for every u E Rn. 



Proof: We may assume, without loss of generality, that v . ( f ( x )- f ( zo) )I0 for 
all x E S(xO, r) .  This implies the existence of a point c E B(x,, r )  such that 
v .f(c) = M ,  where M = max{v .f(x): x  E D(x0,  r)} .  Consequently, v .f'(c)u = 0 
for all u E Rn. QED 

Remark 3. In the case when n = p = 1 Theorem 2 says that if for some z E ( a ,  b )  
we have 

j )  either f ( 2 )  2 max{f ( a ) ,f ( b ) }  j j )  or f ( 2 )  5 min{f ( a ) ,f ( b ) }, 
then there exists c E ( a ,  b )  such that f f ( c )= 0. Notice that every z E ( a ,  b )  
satisfies either j) or j j )  when f ( a )  = f (b) .  

The following result (see Boas [31)is an easy consequence of the above remark. 

Corollary 4. Let a  < b and f :  [ a ,  bl + R be continuous on [ a ,  bl and differentiable 
on [ a ,  bl. Assume that f ' ( a )= f ' (b ) .  Then there exists a  point c  E ( a ,  b )  such that 

Proof: A straightforward computation shows that Corollary 4 is true for f if and 
only if it is true for g ( x )  = f ( x )  - xf ' (a) . Therefore we may assume, without loss 
of generality, that f f ( a ) = f t ( b )  = 0. Define 

h ( x )  = 

f ( x )  - f ( a )  
x #  a 

x - a  
x = a  

The function h is continuous on [ a ,  b ] ,  differentiable on ( a ,  b ]  and h t (b )= 

-h (b ) / (b  - a). 
Assume that h(b ) # 0. From h(b )h f (b )< 0 and h(a ) = 0 we derive the exis- 

tence of z E ( a ,  b )  which satisfies either i) or ii). In the case when h(b ) = 0 
(= h(a) )every point z E ( a ,  b )  will do the job. Hence, by Theorem 2 (Remark 3), 
there exists c E ( a ,  b )  such that h f ( c )= 0, and this implies the stated result. QED 

Geometrical Applications o f  Theorem 1 and Theorem 2. We present three geomet- 
rical applications. To allow for a visual representation of the results we do not 
state them in their full generality. 

Application 1. Let f :  D(0 , l )  c R2 + R3, f ( u , u )  = ( x ( u , u ) ,  y ( u , u ) , z ( u , u ) )  be 
continuous on D(0 , l ) and differentiable on B ( 0 , l ) and let G = Imf. Assume that 
there exists a plane p: ax + by + cz + d = u), z (u ,  u ) )  0 ,  such that ( x ( u ,  u),  ~ ( u ,  
E p for every ( u ,  u )  E S(0, l ) .Then there is a point (u,,  u,) E B ( 0 , l )such that the 
tangent plane to the surface G at the point f(u,, uo)  is parallel to p. 

Justification. By Theorem 1 (see Remark 1) the vector v, = ( a ,  b ,  c )  is orthogonal 
to 

af d f
- (u , )  = p and -(Hue) = q,
d u d~ 

for some u ,  E B(O,l),  u o  = (uo ,  uo). The tangent plane to G at f(u,) is { f ( u , ) + 
m p  + nq: m ,  n  E R},which is obviously parallel to p. 

Application 2. Let f :  D(0 , l )  c R' + R3, f (u ,  u )  = ( x ( u ,  u) ,  ~ ( u ,  u))  beu) , ~ ( u ,  
continuous on D ( 0 , l )  and differentiable on B(0, l ) .  Denote by G the surface 
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G = Imf and let Go = f (dD(0, l )) .Assume that there is a plane p: ax + by + cz + 
d = 0, such that Go is on one side of p and there is a point of S on the other side 
of p. Then the tangent plane to G at some point P E S is parallel to p. 

Justification. Let ui  = (u i ,  v i )  E B ( 0 , l )be such that f (u i )  is on the other side of p 
with respect to Go. Then ( a ,  b ,  c )  . ( f ( u )- f ( u i ) )does not change sign on dD(0,l).  
The conclusion follows from Theorem 2. 

We illustrate this situation with an example 

Example 2. Let f ( u ,  u )  = ( u 2+ u2 - u ,  u2  + u, u2  - c) . Then Go = { ( I  - u ,  u2  + 
u ,  u2 - u) :  u2  + u 2  = I} and f(0,O) = (0,0,0) are on opposite sides of the plane 
p: x + y + z = 1/2.  Hence there is a point P on G = Imf where the tangent 
plane is parallel to p. The point is P = f(1/6,0).  

Application 3. Let x: [ a ,  b ]  + R~ be continuous on [ a ,  b ]  and differentiable on 
[ a ,  b ] ,  and let P = x(a)  = ( x ( a ) ,  y(a) ,  z(a)) ,  Q = x(b)  = ( x ( b ) ,  y(b) ,  ~ ( b ) ) .  Then 
for every plane p passing through the line L joining P with Q there is a point 
c E ( a ,  b )  such that the vector x '(c) is parallel to p. In particular, when the plane 
p is the one containing the origin, we obtain that x '(c) satisfies the equality 

Justification. The first part is an immediate consequence of Theorem 1, since for 
every plane passing through L there is a vector u orthogonal to L and to the 
plane. For the second part observe that the direction v of a line orthogonal to p is 
given by the cross product of the two vectors x(a) and x(b), i.e. v = x ( a )  X x(b) .  
Thus there exists c E ( a ,  b )  such that x(a)  X x(b) . x t (c )= 0, which implies i). For 
a different justification of the result presented in Application 3 see [2]. 

Open problem and coMecture. We conclude the paper with an open problem and 
a conjecture. Theorem 1 and Theorem 2 remain valid if RP is replaced by a 
Hilbert space H. No changes are needed in the proof. They are also true when RP 
is replaced by a Banach space F with the vector v substituted by a linear 
continuous functional 6. 

We conjecture that the theorems are false when Rn is replaced by an infinite- 
dimensional Banach space E, because Proposition 2, which plays a key role in both 
proofs, fails in E. In fact, the unit closed ball D(0 , l )  of E is not compact. 
Consequently, there exists continuous functions f :  D ( 0 , l )  -+ R such that Imf is an 
open interval, as illustrated by the following example. 

Example 3. Let H be the Hilbert space of square summable sequences of real 
numbers and let D be the disk of H centered at the origin and with radius 1, 
D = D(0, l ) . Define 

The map T does not have any fixed point on D. In fact, since IIT(x)ll = 1 for all 
x E D ,  every potential fixed point x must be located on the boundary of D ,  i.e. x is 
fixed for T only if llxll = 1. This implies T(x )= (0, x , ,  . . . ). Combining this result 



- -  - 

with the equality T(x) = x gives x = 0, against the assumption llxll = 1. The 
fixed-point free map T allows us to define the continuous function 

Let us show that the image of f is the open half-line (0.5, w). 
We already know that Ilx - T(x)ll > 0 for every x E D. To verify that the 

greatest lower bound (glb) of {llx - T(x)ll: x E D} is 0 consider the elements 
xn E D(O,1) whose entries after the n position are all 0, while the first n are all 
equal to 1/ 6 :  

Clearly Ilxnll = 1 and Ilx, - T(xn)ll = m.Hence the greatest lower bound is 0. 
To see that Ilx - T(x)(ll < 2 for every x E D, notice that Ilx - T(x)ll = 2 re-

quires llxll = 1 and x = -T(x), i.e. 

( x l ,  x*, . . . ) = (0, -XI, -X2,. . . ) .  

The above equality implies x = 0, a contradiction with llxll = 1. To verify that the 
least upper bound (lub) of {Ilx - T(x)(/: x E D} is 2 consider the elements yn whose 
entries after the n position are all 0, while the first n are alternatively equal to 
*I/,& 

Then Ilx, - T(x,)ll = d w ,which implies that the least upper bound is 2. 
Hence the image of f is the open half-line (0.5, a ) .  

It would be nice to have an example which shows that Theorems 1and 2 fail in 
infinite dimension. So far we have been unable to construct it. 

In the References we mention other contributions (see [SI pg. 19, [61, [81, [9], 
[ l l ] )  regarding Rolle's Theorem, the Mean Value Theorem and the Cauchy 
Generalized Mean Value Theorem. They are not directly related to this paper, but 
the reader may find them useful to get a better overview of the work done in this 
area. 
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Reply to CD's 
"'These arc indeed exciting times in the world of Mi~thcmatics." I would likc 10 respond to the '"l';~lc 


of Two Ct')'s" by Dan Kennedy. "The windb of chi~ngc arc blowing through .. . thc curriculum" and 

some of us feel like tlic Frcnch citizens in the late 1930's that we might bc better off without some of 

the coming changes. I am a practicing mathematician of n dozen years experience writing simulations, 

optimi~ations,and analyses in wireless and landline telephony, printed circuit board production: airline 

Ilect assignment, yield management, and mirintendnce delays. I illso have considcrablc cxposurc to 

Mathematics cduct~tion ;IS consumer and producer. 


It is apt that he chooses the compact (CD) as his analog (pun intcndcd) for thc ncwcst Ncw Math. 

The C D  is truly a triumph o f  markcting ovcr technology. I1 is quiet iind cute, shiny and high-lcch. If the 

medium were truly digital, then the sound wouldn't be dramatically altered hy putting ;I rubber mat on 

top, painting the rim green, o r  reversing the prongs of the AC cord. Uy stut'l'ing thousands of dollars of 

digital signal processors (DSPs) into the signal path, clcver engineers have surpassed chcap turntables 

lo the point wherc the best $10,O(KI C D  players outpcrl'orm S1000 turntables. But, of course, you're 

listening to the DSPs rather than the CD. 


Those of  us who keep concert seats yew aftcr year in spitc of the surfacc noise (audience rustling) 

and clicks and pops (coughs and sneezes) tend also to find ourselves labelled as "collectors" and 

"Luddites" i ~ swe continue to purchase records. I havc over two thousand phonograph records and ;I 

Linn, LOCI, and EK-I to play thcm. The huge advantage of C D  over rccord is the low m;~nufacturing 

cost which should havc brought the consumer chcap recordings, hut somchow this ncvcr happened. 


The educational analogy to "compact" sound is a simplified curriculm relying o n  tcchnolo&y to 

replace the drudgery of traditional teaching methods. We arc offering better high schocll rnathem;~tics 

programs than before, alas, to college students and, occasionally, to graudatc students. Kcducing 

student involvement in math courses has f;tiled to tittract better or more motiv;~tcd studenth to our 

classrooms; did we really expect it to do so? 


In our Rrar:e Ncw Work1 (Aldous Huxley, 1932) of post-Modern education. the cmphasis is on 

maintaining the studcnts' willingness to enroll in our courses and come to our classcs. We must 

entertain them and we mustn't scare them away so machines do thcir "timcscs and g;rzintas" irnci solve 

equalions for thcm and invert matrices for thcm and even graph functions for them. I3cing ;lhlo to 

balance a checkbook without a machine is A Sense of I'ower (Asimov, 1957) in today's Mathematics 

classroom. 


Mathematics is not a spectator sport; we learn it by doing it. Whilc my Linear l'rogramming studcnts 

this fall will learn to use AMPL modeling language, they also will graph polytopes and crank out 

Simplex optimirations by hand. 


Do  I suppose Newton would bc flattered to see our students walking a road to discovcry essentially 

thc same as his? I certainly do. I know I'm flattered to see my own discovcry process (including my 

software) used tcn ycars latcr to teach new students in cellular mobile telephone systcm cnginccring as 

its success in pcdegogy affirms my own confidence in my knowledge. Isaac Newton's rcsults ;ire 

ccrtainly more than thirty times as worthy of posterity as mine and Calculus and Physics studcnts 

should see them his way. 


Our  Mathematics education and curriculum certainly could use a tlosc oS enthusiasm and support 

from both tei~cher and students, hut I doubt it rcquires much rcvision. Computationiil and display tools 

can enhance and deepen our insights and our delight, but we must rcmcmhcr that students learn hy 

traveling the road to discovery with thcir own eyes, ears, and limbs arid not by watching machines for 

professors) do it for them. 


Adarn N. Koscnbcrg 
14061 O;~kgrecn Circle South 

Afton, MN 55001 
AdamCrr.Psionic.mn.org 

mailto:mmartelli@kmcuax

